[Rivet-svn] r4014 - in trunk/data: anainfo plotinfo

blackhole at projects.hepforge.org blackhole at projects.hepforge.org
Wed Nov 14 18:47:17 GMT 2012


Author: buckley
Date: Wed Nov 14 18:47:17 2012
New Revision: 4014

Log:
Merging update changeset [4012] from the AIDA branch

Modified:
   trunk/data/anainfo/CMS_2012_I1107658.info
   trunk/data/plotinfo/CMS_2012_I1107658.plot

Modified: trunk/data/anainfo/CMS_2012_I1107658.info
==============================================================================
--- trunk/data/anainfo/CMS_2012_I1107658.info	Wed Nov 14 18:45:36 2012	(r4013)
+++ trunk/data/anainfo/CMS_2012_I1107658.info	Wed Nov 14 18:47:17 2012	(r4014)
@@ -1,6 +1,6 @@
 Name: CMS_2012_I1107658
 Year: 2012
-Summary: Measurement of the Underlying Event Activity in the Drell-Yan process at centre-of-mass energy of 7 TeV .
+Summary: Measurement of the Underlying Event Activity in the Drell-Yan process at centre-of-mass energy of 7 TeV
 Experiment: CMS
 Collider: LHC
 SpiresID: 
@@ -17,19 +17,25 @@
 NeedCrossSection: yes
 pT Cuts: pT > 0.5 GeV (all charged particles)
 Description: 
-   A measurement of the underlying event activity using Drell-Yan events using muonic final state.
-   The production of charged particles with pseudorapidity |eta| < 2 and
-   transverse momentum pT > 0.5 GeV/c is studied in towards, transverse and away region w.r.t. to
-   the direction of di-muon system. The UE activity is measured in terms of of a particle density 
-   and an energy density. The particle density is computed as the average number of primary charged
-   particles per unit pseudorapidity and per unit azimuth. The energy density is expressed in terms
-   of the average of the scalar sum of the transverse momenta of primary charged particles per unit
-   pseudorapidity and azimuth.  The ratio of the energy and particle density is also reported in 3 regions. 
-   UE activity  is studied as a function of invariant mass of muon pair (M_mumu)
-   by limiting the ISR contribution by requiring transverse momentum of muon pair ( pT_mumu) < 5 GeV/c. The pT_mumu
-   dependence is studied for the events having M_mumu in window of 81-101 GeV^{c}. The normalized charged particle 
-   multiplicity and pT spectrum of the charged particles in three regions also been reported for events having M_mumu in window of 81-101 GeV^{c}.
-   multiplicity and pT spectrum in the transverse also reported in for events having pT_mumu < 5 GeV/c.
+   A measurement of the underlying event activity using Drell-Yan events using
+   muonic final state.  The production of charged particles with pseudorapidity
+   $|\eta| < 2$ and transverse momentum $p_\perp > 0.5$ GeV/c is studied in towards,
+   transverse and away region w.r.t. to the direction of di-muon system. The UE
+   activity is measured in terms of of a particle density and an energy
+   density. The particle density is computed as the average number of primary
+   charged particles per unit pseudorapidity and per unit azimuth. The energy
+   density is expressed in terms of the average of the scalar sum of the
+   transverse momenta of primary charged particles per unit pseudorapidity and
+   azimuth.  The ratio of the energy and particle density is also reported in 3
+   regions.  UE activity  is studied as a function of invariant mass of muon
+   pair ($M_{\mu\mu}$) by limiting the ISR contribution by requiring transverse
+   momentum of muon pair $p_\perp(\mu\mu) < 5 $ GeV/c. The $p_\perp(\mu\mu)$
+   dependence is studied for the events having $M_{\mu\mu}$ in window of
+   81-101 GeV^{c}. The normalized charged particle multiplicity and $p_\perp$
+   spectrum of the charged particles in three regions also been reported for
+   events having M_mumu in window of 81-101 GeV/c.  multiplicity and $p_\perp$
+   spectrum in the transverse also reported in for events having
+   $p_\perp(\mu\mu) < 5$ GeV/c.
 BibKey: Chatrchyan:2012tb
 BibTeX: '@article{Chatrchyan:2012tb,
       author         = "Chatrchyan, Serguei and others",

Modified: trunk/data/plotinfo/CMS_2012_I1107658.plot
==============================================================================
--- trunk/data/plotinfo/CMS_2012_I1107658.plot	Wed Nov 14 18:45:36 2012	(r4013)
+++ trunk/data/plotinfo/CMS_2012_I1107658.plot	Wed Nov 14 18:47:17 2012	(r4014)
@@ -1,175 +1,132 @@
-# BEGIN PLOT /CMS_2012_I1107658/d01-x01-y01
-Title=$<\text{N}_\text{ch}>$  vs $\text{p}_{T}^{\mu\mu}$, $| \Delta \phi | < 60^{o}$, $  M_{\mu\mu} \in [81,101]$ GeV/c$^{2}$
-XLabel=$\text{p}_{T}^{\mu\mu}$ [GeV/c]
-YLabel=$(1/N_\text{ev})\; dN_\text{ch}/\Delta \eta \Delta (\Delta \phi) $
-LegendYPos=0.4
-FullRange=1
+# BEGIN PLOT /CMS_2012_I1107658/d0
 LogY=0
+LegendYPos=0.4
+# END PLOT
+
+# BEGIN PLOT /CMS_2012_I1107658/d0[1-3]
+XLabel=$p_\perp(\mu\mu)$ [GeV]
+YLabel=$\langle\mathrm{d}^2 N_\text{chg}/\mathrm{d}\eta\mathrm{d}\phi\rangle$
+# END PLOT
+
+# BEGIN PLOT /CMS_2012_I1107658/d01-x01-y01
+Title=Toward $N_\text{chg}$ density vs $p_\perp^{\mu\mu}$
 # END PLOT
 
 # BEGIN PLOT /CMS_2012_I1107658/d02-x01-y01
-Title=$<\text{N}_\text{ch}>$  vs $\text{p}_{T}^{\mu\mu}$, $60^{o} < | \Delta \phi | < 120^{o}$, $  M_{\mu\mu} \in [81,101]$ GeV/c$^{2}$
-XLabel=$\text{p}_{T}^{\mu\mu}$ [GeV/c]
-YLabel=$(1/N_\text{ev})\; dN_\text{ch}/\Delta \eta \Delta (\Delta \phi) $
-LegendYPos=0.4
-FullRange=1
-LogY=0
+Title=Transverse $N_\text{chg}$ density vs $p_\perp^{\mu\mu}$
 # END PLOT
 
 # BEGIN PLOT /CMS_2012_I1107658/d03-x01-y01
-Title=$<\text{N}_\text{ch}>$  vs $\text{p}_{T}^{\mu\mu}$, $| \Delta \phi | > 120^{o}$, $  M_{\mu\mu} \in [81,101]$ GeV/c$^{2}$
-XLabel=$\text{p}_{T}^{\mu\mu}$ [GeV/c]
-YLabel=$(1/N_\text{ev})\; dN_\text{ch}/\Delta \eta \Delta (\Delta \phi) $
-LegendYPos=0.4
-FullRange=1
-LogY=0
+Title=Away $N_\text{chg}$ density vs $p_\perp^{\mu\mu}$
+# END PLOT
+
+
+# BEGIN PLOT /CMS_2012_I1107658/d0[4-6]
+XLabel=$p_\perp(\mu\mu)$ [GeV]
+YLabel=$\langle\mathrm{d}^2 \sum p_\perp/\mathrm{d}\eta\mathrm{d}\phi\rangle$ [GeV]
 # END PLOT
 
 # BEGIN PLOT /CMS_2012_I1107658/d04-x01-y01
-Title=$<\Sigma\text{p}_{T}>$  vs $\text{p}_{T}^{\mu\mu}$, $| \Delta \phi | < 60^{o}$, $  M_{\mu\mu} \in [81,101]$ GeV/c$^{2}$
-XLabel=$\text{p}_{T}^{\mu\mu}$ [GeV/c]
-YLabel=$(1/N_\text{ev})\; \Sigma p_{T}/\Delta \eta \Delta (\Delta \phi)$ [GeV/c]
-LegendYPos=0.4
-FullRange=1
-LogY=0
+Title=Toward $\sum p_\perp$ density vs $p_\perp^{\mu\mu}$
 # END PLOT
 
 # BEGIN PLOT /CMS_2012_I1107658/d05-x01-y01
-Title=$<\Sigma\text{p}_{T}>$  vs $\text{p}_{T}^{\mu\mu}$, $60^{o} < | \Delta \phi | < 120^{o}$, $  M_{\mu\mu} \in [81,101]$ GeV/c$^{2}$
-XLabel=$\text{p}_{T}^{\mu\mu}$ [GeV/c]
-YLabel=$(1/N_\text{ev})\; \Sigma p_{T}/\Delta \eta \Delta (\Delta \phi)$ [GeV/c]
-LegendYPos=0.4
-FullRange=1
-LogY=0
+Title=Transverse $\sum p_\perp$ density vs $p_\perp^{\mu\mu}$
 # END PLOT
 
 # BEGIN PLOT /CMS_2012_I1107658/d06-x01-y01
-Title=$<\Sigma\text{p}_{T}>$ vs $\text{p}_{T}^{\mu\mu}$, $| \Delta \phi | > 120^{o}$, $  M_{\mu\mu} \in [81,101]$ GeV/c$^{2}$
-XLabel=$\text{p}_{T}^{\mu\mu}$ [GeV/c]
-YLabel=$(1/N_\text{ev})\; \Sigma p_{T}/\Delta \eta \Delta (\Delta \phi)$ [GeV/c]
-LegendYPos=0.4
-FullRange=1
-LogY=0
+Title=Away $\sum p_\perp$ density vs $p_\perp^{\mu\mu}$
+# END PLOT
+
+
+# BEGIN PLOT /CMS_2012_I1107658/d0[7-9]
+XLabel=$p_\perp(\mu\mu)$ [GeV]
+YLabel=$\langle p_\perp \rangle$
 # END PLOT
 
 # BEGIN PLOT /CMS_2012_I1107658/d07-x01-y01
-Title=$< \Sigma\text{p}_{T}>$/<$\text{N}_\text{ch}>$ vs $\text{p}_{T}^{\mu\mu}$, $| \Delta \phi | < 60^{o}$, $  M_{\mu\mu} \in [81,101]$ GeV/c$^{2}$
-XLabel=$\text{p}_{T}^{\mu\mu}$ [GeV/c]
-YLabel=$<\Sigma p_{T}>/<\text{N}_\text{ch}>$ [GeV/c]
-LegendYPos=0.4
-FullRange=1
-LogY=0
+Title=Toward $\langle p_\perp \rangle$ vs $p_\perp^{\mu\mu}$
 # END PLOT
 
 # BEGIN PLOT /CMS_2012_I1107658/d08-x01-y01
-Title=$< \Sigma\text{p}_{T}>$/$\<text{N}_\text{ch}>$ vs $\text{p}_{T}^{\mu\mu}$, $60^{o} < | \Delta \phi | < 120^{o}$, $  M_{\mu\mu} \in [81,101]$ GeV/c$^{2}$
-XLabel=$\text{p}_{T}^{\mu\mu}$ [GeV/c]
-YLabel=$< \Sigma p_{T}>/<\text{N}_\text{ch}>$ [GeV/c]
-LegendYPos=0.4
-FullRange=1
-LogY=0
+Title=Transverse $\langle p_\perp \rangle$ vs $p_\perp^{\mu\mu}$
 # END PLOT
 
 # BEGIN PLOT /CMS_2012_I1107658/d09-x01-y01
-Title=$< \Sigma\text{p}_{T}>$/$< \text{N}_\text{ch}>$ vs $\text{p}_{T}^{\mu\mu}$, $| \Delta \phi | > 120^{o}$, $  M_{\mu\mu} \in [81,101]$ GeV/c$^{2}$
-XLabel=$\text{p}_{T}^{\mu\mu}$ [GeV/c]
-YLabel=$<\Sigma p_{T}>/<\text{N}_\text{ch}>$ [GeV/c]
-LegendYPos=0.4
-FullRange=1
-LogY=0
+Title=Away $\langle p_\perp \rangle$ vs $p_\perp^{\mu\mu}$
 # END PLOT
 
 
-# BEGIN PLOT /CMS_2012_I1107658/d10-x01-y01
-Title=$<\text{N}_\text{ch}>$ vs $\text{M}_{\mu\mu}$, $| \Delta \phi | < 120^{o}$, $ p_{T}^{\mu\mu} < 5$ GeV/c
-XLabel=$\text{M}_{\mu\mu}$ [GeV/c$^{2}$]
-YLabel=$(1/N_\text{ev})\; dN_\text{ch}/\Delta \eta \Delta (\Delta \phi) $
-LegendYPos=0.4
-FullRange=1
+
+# BEGIN PLOT /CMS_2012_I1107658/d1[0-2]
+XLabel=$m_{\mu\mu}$ [GeV]
+YMin=0.5
 LogY=0
+LegendYPos=0.4
+# END PLOT
+
+# BEGIN PLOT /CMS_2012_I1107658/d10-x01-y01
+Title=Towards $+$ transverse $N_\text{chg}$ density vs $m_{\mu\mu}$, $p_\perp^{\mu\mu} < 5$ GeV
+YLabel=$\langle\mathrm{d}^2 N_\text{chg}/\mathrm{d}\eta\mathrm{d}\phi\rangle$
 # END PLOT
 
 # BEGIN PLOT /CMS_2012_I1107658/d11-x01-y01
-Title=$<\Sigma\text{p}_{T}>$ vs $\text{M}_{\mu\mu}$, $| \Delta \phi | < 120^{o}$, $ p_{T}^{\mu\mu} < 5$ GeV/c
-XLabel=$\text{M}_{\mu\mu}$ [GeV/c$^{2}$]
-YLabel=$(1/N_\text{ev})\; \Sigma p_{T}/\Delta \eta \Delta (\Delta \phi)$ [GeV/c]
-LegendYPos=0.4
-FullRange=1
-LogY=0
+Title=Towards $+$ transverse $\sum p_\perp$ density vs $m_{\mu\mu}$, $p_\perp^{\mu\mu} < 5$ GeV
+YLabel=$\langle\mathrm{d}^2 \sum p_\perp/\mathrm{d}\eta\mathrm{d}\phi\rangle$ [GeV]
 # END PLOT
 
 # BEGIN PLOT /CMS_2012_I1107658/d12-x01-y01
-Title=$< \Sigma\text{p}_{T}>$/$< \text{N}_\text{ch}>$ vs $\text{M}_{\mu\mu}$, $| \Delta \phi | < 120^{o}$, $p_{T}^{\mu\mu} < 5$ GeV/c
-XLabel=$\text{M}_{\mu\mu}$ [GeV/c$^{2}$]
-YLabel=$<\Sigma p_{T}>/<\text{N}_\text{ch}>$ [GeV/c]
-LegendYPos=0.4
-FullRange=1
-LogY=0
+Title=Towards $+$ transverse $\langle p_\perp \rangle$ vs $m_{\mu\mu}$, $p_\perp^{\mu\mu} < 5$ GeV
+YLabel=$\langle p_\perp \rangle$
 # END PLOT
 
 
-# BEGIN PLOT /CMS_2012_I1107658/d13-x01-y01
-Title=Normalized $\text{N}_\text{ch}$, $| \Delta \phi | < 60^{o}$, $  M_{\mu\mu} \in [81,101]$ GeV/c$^{2}$
-XLabel=$\text{N}_\text{ch}$
-YLabel=$(1/N_\text{ev})\; d N_\text{ev} / d N_\text{ch}$
-FullRange=1
-LogY=1
 
+# BEGIN PLOT /CMS_2012_I1107658/d1[3-5]
+XLabel=$N_\text{chg}$
+YLabel=$1/N_\text{ev} \; \mathrm{d} N_\text{ev} / \mathrm{d} N_\text{chg}$
+# END PLOT
+
+# BEGIN PLOT /CMS_2012_I1107658/d13-x01-y01
+Title=Toward $N_\text{chg}$
 # END PLOT
 
 # BEGIN PLOT /CMS_2012_I1107658/d14-x01-y01
-Title= Normalized  $\text{N}_\text{ch}$, $60^{o} < | \Delta \phi | < 120^{o}$, $  M_{\mu\mu} \in [81,101]$ GeV/c$^{2}$
-XLabel=$\text{N}_\text{ch}$
-YLabel=$(1/N_\text{ev})\; d N_\text{ev} / d N_\text{ch}$
-FullRange=1
-LogY=1
+Title=Transverse $N_\text{chg}$
 # END PLOT
 
 # BEGIN PLOT /CMS_2012_I1107658/d15-x01-y01
-Title= Normalized $\text{N}_\text{ch}$, $| \Delta \phi | > 120^{o}$, $  M_{\mu\mu} \in [81,101]$ GeV/c$^{2}$
-XLabel=$\text{N}_\text{ch}$
-YLabel=$(1/N_\text{ev})\; d N_\text{ev} / d N_\text{ch}$
-FullRange=1
-LogY=1
+Title=Away $N_\text{chg}$
 # END PLOT
 
 
+
+# BEGIN PLOT /CMS_2012_I1107658/d1[6-8]
+XLabel=$p_\perp$ [GeV]
+YLabel=$1/N_\text{ev} \; \mathrm{d} N_\text{chg} / \mathrm{d} p_\perp$ [GeV$^{-1}$]
+# END PLOT
+
 # BEGIN PLOT /CMS_2012_I1107658/d16-x01-y01
-Title=Normalized $ \text{p}_\text{T}$, $| \Delta \phi | < 60^{o}$, $  M_{\mu\mu} \in [81,101]$ GeV/c$^{2}$
-XLabel=$ p_\text{T}$ [GeV/c]
-YLabel=d N_\text{ch} / d p_\text{T}$ $[(\text{GeV/c})^{-1}]$
-FullRange=1
-LogY=1
+Title=Toward $p_\perp$
 # END PLOT
 
 # BEGIN PLOT /CMS_2012_I1107658/d17-x01-y01
-Title= Normalized $ \text{p}_\text{T}$ , $60^{o} < | \Delta \phi | < 120^{o}$, $  M_{\mu\mu} \in [81,101]$ GeV/c$^{2}$
-XLabel=$ p_\text{T}$ [GeV/c]
-YLabel=d N_\text{ch} / d p_\text{T}$ $[(\text{GeV/c})^{-1}]$
-FullRange=1
-LogY=1
+Title=Transverse $p_\perp$
 # END PLOT
 
 # BEGIN PLOT /CMS_2012_I1107658/d18-x01-y01
-Title= Normalized $ \text{p}_\text{T}$ , $| \Delta \phi | > 120^{o}$, $  M_{\mu\mu} \in [81,101]$ GeV/c$^{2}$
-XLabel=$ p_\text{T}$ [GeV/c]
-YLabel=d N_\text{ch} / d p_\text{T}$ $[(\text{GeV/c})^{-1}]$
-FullRange=1
-LogY=1
+Title=Away $p_\perp$
 # END PLOT
 
+
 # BEGIN PLOT /CMS_2012_I1107658/d19-x01-y01
-Title= Normalized $\text{N}_\text{ch}$, $60^{o} < | \Delta \phi | < 120^{o}$, $ p_{T}^{\mu\mu} < 5$ GeV/c
-XLabel=$\text{N}_\text{ch}$
-YLabel=$(1/N_\text{ev})\; dN_\text{ev} / dN_\text{ch}$
-FullRange=1
-LogY=1
+Title=Transverse $N_\text{chg}$, $p_\perp(\mu\mu) < 5$ GeV
+XLabel=$N_\text{chg}$
+YLabel=$1/N_\text{ev} \; \mathrm{d} N_\text{ev} / \mathrm{d} N_\text{chg}$
 # END PLOT
 
 # BEGIN PLOT /CMS_2012_I1107658/d20-x01-y01
-Title= Normalized $ \text{p}_\text{T}$, $60^{o} < | \Delta \phi | < 120^{o}$, $ p_{T}^{\mu\mu} < 5$ GeV/c
-XLabel=$ p_\text{T}$ [GeV/c]
-YLabel=$dN_\text{ch} / dp_\text{T}$ $[(\text{GeV/c})^{-1}]$
-FullRange=1
-LogY=1
+Title=Transverse $p_\perp$, $p_\perp(\mu\mu) < 5$ GeV
+XLabel=$p_\perp$ [GeV]
+YLabel=$1/N_\text{ev} \; \mathrm{d} N_\text{chg} / \mathrm{d} p_\perp$ [GeV$^{-1}$]
 # END PLOT


More information about the Rivet-svn mailing list