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Abstract

We sketch the architecture of O’Mega, an optimizing compiler for
tree amplitudes in quantum field theory, and briefly describe its usage.
O’Mega generates optimally efficient code for scattering amplitudes for
many polarized particles in the Standard Model and its extensions.

1 Introduction

Current and planned experiments in high energy physics can probe physics in
processes with polarized beams and many tagged particles in the final state.
The combinatorial explosion of the number of Feynman diagrams contribut-
ing to scattering amplitudes for many external particles calls for the devel-
opment of more compact representations that translate well to efficient and
reliable numerical code. In gauge theories, the contributions from individ-
ual Feynman diagrams are gauge dependent. Strong numerical cancellations
in a redundant representation built from individual Feynman diagrams lead
to a loss of numerical precision, stressing further the need for eliminating
redundancies.

Due to the large number of processes that have to be studied in order
to unleash the potential of modern experiments, the construction of nearly
optimal representations must be possible algorithmically on a computer and
should not require human ingenuity for each new application.

O’Mega [1] is a compiler for tree-level scattering amplitudes that satisfies
these requirements. O’Mega is independent of the target language and can
therefore create code in any programming language for which a simple output
module has been written. To support a physics model, O’Mega requires as
input only the Feynman rules and the relations among coupling constants.

Similar to the numerical approaches [2] and [3], O’Mega reduces the
growth in calculational effort from a factorial of the number of external par-
ticles to an exponential. The symbolic nature of O’Mega, however, increases
its flexibility. Indeed, O’Mega can emulate both [2] and [3] and produces
code that is empirically at least twice as fast. The detailed description of all
algorithms is contained in the extensively commented source code of O’Mega.

In this note, we sketch the architecture of O’Mega and describe the usage
of the first version. The building blocks of the representation of scattering
amplitudes generated by O’Mega are described in section 2 and directed
acyclical graphs are introduced in section 3. The algorithm for constructing
the directed acyclical graph is presented in section 4 and its implementation
is described in section 5. We conclude with a few results and examples in
section 6. Practical information is presented in the appendices: installation
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of the O’Mega software in appendix A, running of the O’Mega compiler in
appendix B and using O’Mega’s output in appendix C. Finally, appendix D
briefly discusses mechanisms for extending O’Mega.

2 One-Particle Off-Shell Wave Functions

One-Particle Off-Shell Wave Functions (1POWs) are obtained from con-
nected Green’s functions by applying the LSZ reduction formula to all but
one external line while the remaining line is kept off the mass shell

W (x; p1, . . . , pn; q1, . . . , qm) =

〈φ(q1), . . . , φ(qm); out Φ(x) φ(p1), . . . , φ(pn); in〉 . (1)

Depending on the context, the off-shell line will either be understood as am-
putated or not. For example, 〈φ(q1), φ(q2); out Φ(x) φ(p1); in〉 in unflavored
scalar φ3-theory is given at tree level by

x

p1 q1

q2 =

x

p1 q1

q2 +

x

p1 q1

q2 +

x

p1 q1

q2 . (2)

The number of distinct momenta that can be formed from n external
momenta is P (n) = 2n−1 − 1. Therefore, the number of tree 1POWs grows
exponentially with the number of external particles and not with a factorial,
as the number of Feynman diagrams, e. g. F (n) = (2n − 5)!! = (2n − 5) ·
. . . 5 · 3 · 1 in unflavored φ3-theory.

At tree-level, the set of all 1POWs for a given set of external momenta
can be constructed recursively

x

n =
∑
k+l=n

x

k l
, (3)

where the sum extends over all partitions of the set of n momenta. This
recursion will terminate at the external wave functions.

For all quantum field theories, there are—well defined, but not unique—
sets of Keystones K such that the sum of tree Feynman diagrams for a given
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process can be expressed as a sparse sum of products of 1POWs without
double counting. In a theory with only cubic couplings this is expressed as

T =

F (n)∑
i=1

Di =

P (n)∑
k,l,m=1

K3
fkflfm

(pk, pl, pm)Wfk(pk)Wfl(pl)Wfm(pm) , (4)

with obvious generalizations. The non-trivial problem is to avoide the double
counting of diagrams like

,

where the circle denotes the keystone. The problem has been solved explicitly
for general theories with vertices of arbitrary degrees. The solution is inspired
by arguments [2] based on the equations of motion (EOM) of the theory in
the presence of sources. The iterative solution of the EOM leads to the
construction of the 1POWs and the constraints imposed on the 1POWs by
the EOM suggest the correct set [2] of partitions {(pk, pl, pm)} in equation (4).

The maximally symmetric solution selects among equivalent diagrams the
keystone closest to the center of a diagram. This corresponds to the numerical
expressions of [2]. The absence of double counting can be demonstrated by
counting the number F (dmax, n) of unflavored Feynman tree diagrams with n
external legs and vertices of maximum degree dmax in two different ways: once
directly and then as a sum over keystones. The number F̃ (dmax, Nd,n) of
unflavored Feynman tree diagrams for one keystone Nd,n = {n1, n2, . . . , nd},
with n = n1 +n2 + · · ·+nd, is given by the product of the number of subtrees
and symmetry factors

F̃ (dmax, Nd,n) =
n!

|S(Nd,n)|σ(nd, n)

d∏
i=1

F (dmax, ni + 1)

ni!
(5a)

where |S(N)| is the size of the symmetric group of N , σ(n, 2n) = 2 and
σ(n,m) = 1 otherwise. Indeed, it can be verified that the sum over all
keystones reproduces the number

F (dmax, n) =
dmax∑
d=3

∑
N={n1,n2,...,nd}
n1+n2+···+nd=n

1≤n1≤n2≤···≤nd≤bn/2c

F̃ (dmax, N) (5b)

of all unflavored Feynman tree diagrams.
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A second consistent prescription for the construction of keystones is max-
imally asymmetric and selects the keystone adjacent to a chosen external
line. This prescription reproduces the approach in [3] where the tree-level
Schwinger-Dyson equations are used as a special case of the EOM.

Interfering color amplitudes are implemented by using O’Mega’s basic
algorithm for the Feynman rules in the color flow basis [4, 5]. In the case
of Dirac fermions, Fermi statistics can be implemented straightforwardly in
the 1POWs by maintaining a list of the ordered pairs of external fermions
connected by directed fermion lines. This approach can be generalized [4] for
models with Majorana fermions and fermion number violating interactions,
such as supersymmetric models using the Feynman rules of [6].

Recursive algorithms for gauge theory amplitudes have been pioneered
in [7]. The use of 1POWs as basic building blocks for the calculation of
scattering amplitudes in tree approximation has been advocated in [8] and a
heuristic procedure, without reference to keystones, for minimizing the num-
ber of arithmetical operations has been suggested. This approach is used by
MADGRAPH [9] for fully automated calculations. The heuristic optimiza-
tions are quite efficient for 2 → 4 processes, but the number of operations
remains bounded from below by the number of Feynman diagrams. In the
time since O’Mega was first made available publically, more programs using
a recursive construction of amplitudes have been published, e. g. Comix [10].

2.1 Ward Identities

A particularly convenient property of the 1POWs in gauge theories is that,
even for vector particles, the 1POWs are ‘almost’ physical objects and satisfy
simple Ward Identities

∂

∂xµ
〈out Aµ(x) in〉amp. = 0 (6a)

for unbroken gauge theories and

∂

∂xµ
〈out Wµ(x) in〉amp. = −mW 〈out φW (x) in〉amp. (6b)

for spontaneously broken gauge theories in Rξ-gauge for all physical external
states in〉 and out〉. Thus the identities (6) can serve as powerful numer-
ical checks both for the consistency of a set of Feynman rules and for the
numerical stability of the generated code. The code for matrix elements can
optionally be instrumented by O’Mega with numerical checks of these Ward
identities for intermediate lines.
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3 Directed Acyclical Graphs

The algebraic expression for the tree-level scattering amplitude in terms of
Feynman diagrams is itself a tree. The much slower growth of the set of
1POWs compared to the set of Feynman diagrams shows that this repre-
sentation is extremely redundant. In this case, Directed Acyclical Graphs
(DAGs) provide a more efficient representation, as illustrated by a trivial
example

ab(ab+ c) =

×
+

× c

a b

×
a b

=

×
+

× c

a b

(7)

where one multiplication is saved. The replacement of expression trees by
equivalent DAGs is part of the repertoire of optimizing compilers, known
as common subexpression elimination. Unfortunately, this approach fails in
practice for all interesting expressions appearing in quantum field theory,
because of the combinatorial growth of space and time required to find an
almost optimal factorization.

However, the recursive definition in equation (3) allows to construct the
DAG of the 1POWs in equation (4) directly [1], without having to construct
and factorize the Feynman diagrams explicitly.

As mentioned above, there is more than one consistent prescription for
constructing the set of keystones. The symbolic expressions constructed by
O’Mega contain the symbolic equivalents of the numerical expressions com-
puted by [2] (maximally symmetric keystones) and [3] (maximally asymmet-
ric keystones) as special cases.

4 Algorithm

By virtue of their recursive construction in (3), tree-level 1POWs form a
DAG and the problem is to find the smallest DAG that corresponds to a
given tree, (i. e. a given sum of Feynman diagrams). O’Mega’s algorithm
proceeds in four steps

Grow: starting from the external particles, build the tower of all
1POWs up to a given height (the height is less than the number
of external lines for asymmetric keystones and less than half of
that for symmetric keystones) and translate it to the equivalent
DAG D.
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Select: from D, determine all possible flavored keystones for
the process under consideration and the 1POWs appearing in
them.

Harvest: construct a sub-DAG D∗ ⊆ D consisting only of nodes
that contribute to the 1POWs appearing in the flavored key-
stones.

Calculate: multiply the 1POWs as specified by the keystones
and sum the keystones.

By construction, the resulting expression contains no more redundancies and
can be translated to a numerical expression. In general, asymmetric key-
stones create an expression that is smaller by a few percent than the result
from symmetric keystones, but it is not obvious which approach produces
the numerically more robust results.

The details of this algorithm as implemented in O’Mega are described in
the source code. The persistent data structures [11] used for the determina-
tion of D∗ are very efficient. The generation of Fortran code for amplitudes in
the Standard Model is always much faster than the subsequent compilation.

5 Implementation

The O’Mega compiler is implemented in OCaml [12], a functional program-
ming language of the ML family with a very efficient, portable and freely
available implementation, that can be bootstrapped on all modern comput-
ers in a few minutes.

The powerful module system of OCaml allows an efficient and concise
implementation of the DAGs for a specific physics model as a functor ap-
plication. This functor maps from the category of trees to the category of
DAGs and is applied to the set of trees defined by the Feynman rules of any
model under consideration.

The module system of OCaml has been used to make the combinatorial
core of O’Mega demonstrably independent from the specifics of both the
physics model and the target language, as shown in Figure 1. A Fortran
backend has been realized first. The electroweak Standard Model and the
Minimal Supersymmetric Standard Model (MSSM) have been implemented
and tested extensively [13]. Many extensions of these models and more exotic
models are available in the distribution.

Many extensions of the Standard Model, most prominently the MSSM,
contain Majorana fermions. In this case, fermion lines have no canonical
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Figure 1: Major module dependencies in O’Mega. The diamond shaped
nodes denote abstract signatures defining functor domains and co-domains.
The hexagons denote functors and rectangular boxes denote modules, while
oval boxes stand for example applications.
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process Diagrams O’Mega
# vertices #prop. vertices

e+e− → e+ν̄edū 20 80 14 45
e+e− → e+ν̄edūγ 146 730 36 157
e+e− → e+ν̄edūγγ 1256 7536 80 462
e+e− → e+ν̄edūγγγ 12420 86940 168 1343
e+e− → e+ν̄edūγγγγ 138816 1110528 344 3933

Table 1: Radiative corrections to four fermion production: comparison of
the computational complexity of scattering amplitudes obtained from Feyn-
man diagrams and from O’Mega. (The counts correspond to the full Stan-
dard Model—sans light fermion Yukawa couplings—in unitarity gauge with
quartic couplings emulated by cubic couplings of non-propagating auxiliary
fields.)

orientation and the determination of the relative signs of interfering am-
plitudes is not trivial. However, the Feynman rules for Majorana fermions
and fermion number violating interactions proposed in [6] have been imple-
mented in O’Mega [4] in analogy to the Feynman rules for Dirac fermions
and both methods are available. Numerical comparisons of amplitudes for
Dirac fermions calculated both ways show agreement at a small multiple of
the machine precision.

As mentioned above, the compilers for the target programming language
are the slowest step in the generation of executable code. On the other
hand, the execution speed of the code is limited by non-trivial vertex eval-
uations for vectors and spinors, which need O(10) complex multiplications.
Therefore, an O’Mega Virtual Machine can challenge native code and avoid
compilations.

6 Results

6.1 Examples

Tables 1 and 2 show the reduction in computational complexity for some
important processes at a e+e−-linear collider including radiative corrections.
Using the asymmetric keystones can reduce the number of vertices by some 10
to 20 percent relative to the quoted numbers for symmetric keystones.
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process Diagrams O’Mega
# vertices #prop. vertices

e+e− → e+ν̄edūbb̄ 472 2832 49 232
e+e− → e+ν̄edūbb̄γ 4956 34692 108 722
e+e− → e+ν̄edūbb̄γγ 58340 466720 226 2212

Table 2: Radiative corrections to six fermion production: comparison of
the computational complexity of scattering amplitudes obtained from Feyn-
man diagrams and from O’Mega. (The counts correspond to the full Stan-
dard Model—sans light fermion Yukawa couplings—in unitarity gauge with
quartic couplings emulated by cubic couplings of non-propagating auxiliary
fields.)

6.2 Comparisons

HELAC’s [3] diagnostics report more vertices than O’Mega for identical am-
plitudes. This ranges from comparable numbers for Standard Model pro-
cesses with many different flavors to an increase by 50 percent for processes
with many identical flavors. Empirically, O’Mega’s straight line code is twice
as fast as HELAC’s DO-loops for identical optimizing Fortran compilers (not
counting HELAC’s initialization phase). Together this results in an improved
performance by a factor of two to three.

The numerical efficiency of O’Mega’s Fortran runtime library is empiri-
cally identical to HELAS [8]. Therefore, O’Mega’s performance can directly
be compared to MADGRAPH’s [9] by comparing the number of vertices. For
2→ 5-processes in the Standard Model, O’Mega’s advantage in performance
is about a factor of two and grows from there.

The results have been compared with MADGRAPH [9] for many Stan-
dard Model processes and numerical agreement at the level of 10−11 has been
found with double precision floating point arithmetic.

6.3 Applications

O’Mega generated amplitudes are used in the multi-purpose event generator
generator WHIZARD [14]. The first complete experimental study of vector
boson scattering in six fermion production for linear collider physics [15] was
facilitated by O’Mega and WHIZARD.
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A Installing O’Mega

A.1 Sources

O’Mega is Free Software. The sources can be obtained from http://www.

hepforge.org/downloads/whizard. Standalone sources are distributed as
tarballs omega-2.n.m.tar.gz. They are also contained in the subdirec-
tory whizard-2.n.m/src/omega of the corresponding WHIZARD tarballs
whizard-2.n.m.tar.gz with identical version number.

The command
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zcat omega-2.n.m.tar.gz | tar xf -

will unpack the source code, build environment, test suites and documenta-
tion to the directory omega-2.n.m. Interesting subdirectories are

src contains the unabridged and uncensored sources of O’Mega,
including comments,

share/doc contains LATEX sources of user documentation,

tests contains regression tests, which can be run by make check

after building O’Mega.

A.2 Prerequisites

A.2.1 OCaml

O’Mega needs version 3.10 or higher, which is part of most Linux distri-
butions. You can also get it from http://caml.inria.fr/. If necessary,
building OCaml from source is straightforward (just follow the instructions
in the file INSTALL in the toplevel directory, the defaults are almost always
sufficient) and takes a few minutes minutes on a modern desktop system.
The native code compiler is available for most modern systems (cf. the file
README in the toplevel directory) and should be used instead of the byte code
compiler.

A.2.2 Fortran Compiler

Not required for compiling or running O’Mega, but Fortran is currently the
only fully supported target language.

Code generated by O’Mega is known to be compiled correctly with recent
versions of the GNU Fortran compiler gfortran (preferably version 4.5.0 or
later, which is required by WHIZARD 2.x) and the NAG Fortran compiler.

A.3 Building O’Mega

O’Mega uses the GNU autotools. Configuration is performed automatically
by testing some system features with the command1

$ ./configure

1NB: configure keeps its state in config.cache. If you want to reconfigure after
adding new libraries to your system, you should remove config.cache before rerunning
configure.
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See

$ ./configure --help

for additional options.

B Running O’Mega

O’Mega is a simple application that takes parameters from the command-
line and writes results to the standard output device (diagnostics go to the
standard error device). E. g., the UNIX commandline

$ omega_SM.opt -scatter "e+ e- -> e+ nue ubar d" > cc20_amplitude.f95

will cause O’Mega to write a Fortran module containing the Standard Model
tree level scattering amplitude for e+e− → e+νeūd to the file cc20_amplitude.
f95. Particles can be combined with colons. E. g.,

$ omega_SM.opt -scatter "ubar:u:dbar:d ubar:u:dbar:d -> e+:mu+ e-:mu-"

will cause O’Mega to write a Fortran module containing the Standard Model
tree level parton scattering amplitudes for all Drell-Yan processes to the
standard output.

A synopsis of the available options, in particular the particle names, can
be requested with the option --help. A partial list will look like

$ omega_SM.opt -help

usage: ./bin/omega_QCD.opt [options]\

[e-|nue|u|d|e+|nuebar|ubar|dbar|mu-|numu|c|s|mu+|numubar|\

cbar|sbar|tau-|nutau|t|b|tau+|nutaubar|tbar|bbar|\

A|Z|W+|W-|gl|H|phi+|phi-|phi0]

-scatter in1 in2 -> out1 out2 ...

-scatter_file in1 in2 -> out1 out2 ...

-decay in -> out1 out2 ...

-decay_file in -> out1 out2 ...

-cascade select diagrams

-help Display this list of options

14
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B.1 Processes

More than one process can be computed in the same module, as long as the
number of incoming and outgoing particles match. In particular, scatterings
can not be mixed with decays. Also, the number of helicity states of the
particles must match, i. e. massive vector bosons must not be combined with
massless vector bosons, but quarks can be combined with gluons.

-scatter in1 in2 -> out1 out2 . . . outn

Construct the amplitude for a 2→ n particle scattering.

-scatter file file

Read scattering process descriptions from a file. This is equiv-
alent to giving multiple -scatter arguments, one for each line.

-decay in -> out1 out2 . . . outn

Construct the amplitude for a 1→ n particle decay.

-decay file file

Read decay descriptions from a file. This is equivalent to giving
multiple -decay arguments, one for each line.

In the process descriptions above, each particle can be specified as a set
of flavors, with elements separated by :, i. e. f 1:f 2: . . . :f n. O’Mega will
generate code for the multiple cartesian product of these flavor sets, ig-
noring combinations prohibited by charge conservation, etc. For example,
-decay "Z -> e+:mu+ e-:mu-" expands to the combination of Z → e+e−,
Z → µ+e−, Z → e+µ− and Z → µ+µ−. However only code for Z → e+e−

and Z → µ+µ− will be generated, since the others are prohibited by flavor
conservation assumed in the SM. If two amplitudes differ only by the permu-
tation of final state particles, only one representative is generated in order
to preserve code size.

It is possible to select a subset of Feynman diagrams by requiring one or
more propagators carrying sums or differences of external momenta, option-
ally with particular flavors

-cascade restriction

Select diagrams, e. g. for the process e+e− → e+e−, the restric-
tion ‘-cascade "3 + 4 ~ Z"’ will generate code for e+e− →
Z(∗) → e+e−.
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In the general case, the propagators are specified as an un-
signed sum of momenta, with ‘+’ as binary combination op-
erator. This allows to specify propagators with timelike and
spacelike moments.

For each propagator, a set of flavors can be requested with the
‘~’ operator, where the elements of the flavor set are combined
by ‘:’. If the momentum is spacelike, both particle and an-
tiparticle are accepted, since the distinction would depend on
the reference frame. The complement of the flavor set can be
selected with ‘!’, as in ‘-cascade "1 + 2 ~ !A:gl"’, which
demands an arbitrary s-channel resonance that is neither a
photon nor a gluon. If ‘~’ is replaced by ‘=’ or ‘#’, the propa-
gator in question will be replaced by an on-shell projector or a
gaussian smearing, respectively.

Arbitrary restrictions can be combined with logical-and ‘&&’
and can be grouped with parentheses ‘(’ and ‘)’.

Note that, if an outgoing momentum is part of a restriction,
O’Mega will never change the position of this particle, even if
this forces the same amplitude to appear twice.

B.2 Diagnostics

-warning:

Include code that checks the supplied arguments at runtime
and prints a warning in case of an error.

-warning:a

Check the number of input arguments (momenta and spins).

-warning:m

Check the values of the input momenta.

-warning:g

Check Ward identities for internal currents numerically.

-error:

-error:a

-error:m
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-error:g

Like -warning: but terminates on error.

-unphysical n

Select unphysical polarization state εµ(k) = kµ for the nth
particle to test Ward identities numerically.

-quiet

Don’t print a summary

-summary

Print only a summary to standard error

-revision

Print revision control information to standard error.

-params

Produce code to print the model parameters.

B.3 Fusion Options

-fusion:progress

Report completion of each process to the standard error stream,
including an estimate of the remaining time.

-fusion:progress file name

Write the progress report to the file.

-fusion:ignore-cache

Ignore cached lookup tables.

-fusion:overwrite-cache

Overwrite cached lookup tables.

B.4 Model Options

B.4.1 Standard Model

The model specific options in the standard model are concerned with the
treatment of the width of unstable particles. By default, a “time like width”
is used, i. e. the width is suppressed for space like momenta.
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-model:constant width

Use a constant width for all propagators, including space like.

-model:fudged width

Use the “fudge factor prescription”[16] for W±, t and t̄.

-model:custom width function

Compute a custom width as a function of the momentum and
a width value.

-model:cancel widths

Set all widths to zero.

These options are implemented by most other models as well.

B.5 Target Options

B.5.1 Fortran

-target:module name

Name of the generated Fortran module (default: omega_amplitude).

-target:width n

Maximum output line length (default: 80).

-target:continuation n

Maximum number of continuation lines (default: unlimited).

-target:kind kind

All real and complex numbers are declared with the given kind
(default: default).

Depending on the model, the scattering amplitudes need to access parameters
(coupling constants, masses, etc.). For this purpose, Fortran modules can be
imported.

-target:use name

Import the specified module. This option can be given more
than once.
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-target:parameter module name

Import the specified parameter module. Only the last of these
options takes effect.

The scattering amplitudes generated by O’Mega can become very large and
placing all code to compute them in a single function, module or even file can
result in a dramatic increase in compilation time for most Fortran compilers.
Therefore, O’Mega allows to split the code into smaller pieces:

-target:single function

Compute the scattering amplitudes in a single monolithic func-
tion.

-target:split function n

Split the scattering amplitudes into functions with approxi-
mately n expressions each (default: 10). This is the default
behavior.

-target:split module n

Split the scattering amplitudes into modules with approximately
n expressions each (default: 10).

-target:split file n

Split the scattering amplitudes into files with approximately n
expressions each (default: 10).

The code generated by O’Mega can be instrumented with OpenMP directives
to take advantage of multiple computing cores and symmetric multiprocess-
ing.

-target:openmp

Activate OpenMP support.

The implementation of this feature is not yet mature. Depending on the size
of the scattering amplitudes and the cache size of the executing processor, it
can lead to almost linear speedup with the number of cores or to no speedup
due to cache collisions.
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B.6 Miscellaneous Options

-o file

Redirect standard output to the file.

-initialize directory

Precompute large lookup tables for this model and store them
in the directory.

-template

Write a template for using handwritten amplitudes with WHIZARD.

C Using O’Mega’s Output

The structure of the output file, the calling convention and the required
libraries depends on the target language, of course.

Note that the implementation of color in O’Mega is described in detail
in [4, 5]. Nevertheless we describe below, for completeness’ sake, the appli-
cation program interface.

C.1 Fortran

C.1.1 Libraries

The imported Fortran modules are

kinds

This must define default, which can be whatever the For-
tran compiler supports. Note that single precision arithmetic
is usually not adequate for the computation of complicated am-
plitudes with gauge cancellations.

omega95

Defines the vertices for Dirac spinors in the chiral representa-
tion and vectors. An early experiment with inlining all Fortran
code was a failure on Linux/Intel PCs. The inlined code was
huge, absolutely unreadable and only marginally faster. The
bulk of the computational cost is always in the vertex evalua-
tions, and function calls create in comparison negligible costs.
This observation is system dependent, of course, and inlining
might become beneficial for other architectures, after all.
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omega95 bispinors

Is an alternative that defines the vertices for Dirac and Majo-
rana spinors in the chiral representation and vectors using the
Feynman rules of [6], as described in [4].

omega color

The color factors apply to squared amplitudes and are de-
scribed by a one-dimensional array of element of

type omega_color_factor

integer :: cf, conjg_cf

complex(kind=default) :: factor

end type omega_color_factor

where the indices signify the pair of color flow and conjugate
color flow. For more details see [4].

Therefore the generated module starts with

module omega_amplitude

use kinds

use omega95

use omega_color, OCF => omega_color_factor

implicit none

private

C.1.2 Processes

O’Mega can generate code for the scattering amplitudes of more than one pro-
cess. It will, however generate only the code for allowed flavor combinations.
Therefore, an application must be able to inquire the available processes.

All processes will have the same number of incoming and outgoing par-
ticles

pure function number_particles_in () result (n)

integer :: n

end function number_particles_in

pure function number_particles_out () result (n)

integer :: n

end function number_particles_out
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O’Mega will only generate code for flavor combinations with non-vanishing
scattering amplitudes and will suppress code for amplitudes that differ only
by a permutation of final state particles. The available flavor combinations
can be inspected with

pure function number_flavor_states () result (n)

integer :: n

end function number_flavor_states

pure subroutine flavor_states (f)

integer, dimension(:,:), intent(out) :: f

end subroutine flavor_states

where the table f is interpreted as

f(i,j) contains the PDG code of the ith particle in the jth flavor
combination

and has the shape

size(f,dim=1) = N(in) +N(out)

size(f,dim=2) = N(flavor states) .

Similarly, the possible combinations of helicities can be inspected with

pure function number_spin_states () result (n)

integer :: n

end function number_spin_states

pure subroutine spin_states (h)

integer, dimension(:,:), intent(out) :: h

end subroutine spin_states

where the table h is interpreted as

h(i,j) contains the helicity of the ith particle in the jth helicity
combination (for particles with half integer spins, the helicities
are doubled)

and has the shape

size(h,dim=1) = N(in) +N(out)

size(h,dim=2) = N(spin states) .
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C.1.3 Color

Color is described by color flows. In the present version, only particles in
the fundamental, anti-fundamental and adjoint representation of SU(N) are
supported and at most two color lines can end at an external particle [4]. This
will be generalized [5] in future versions and therefore it must be possible to
inquire the number of color indices together with the number of possible color
flows

pure function number_color_indices () result (n)

integer :: n

end function number_color_indices

pure function number_color_flows () result (n)

integer :: n

end function number_color_flows

pure subroutine color_flows (c, g)

integer, dimension(:,:,:), intent(out) :: c

logical, dimension(:,:), intent(out) :: g

end subroutine color_flows

The tables c and g are interpreted as

c(:,i,j) describes the color lines ending at the ith particle in
the jth color flow

g(i,j) is .true. iff the ith particle in the jth color flow is an
unphysical “U(1) ghost” [4]

and have the shapes

size(c,dim=1) = N(color indices)

size(c,dim=2) = size(g,dim=1) = N(in) +N(out)

size(c,dim=3) = size(g,dim=2) = N(color flows)

The different color factors can be inquired with

pure function number_color_factors () result (n)

integer :: n

end function number_color_factors

pure subroutine color_factors (cf)

type(omega_color_factor), dimension(:), intent(out) :: cf

end subroutine color_factors
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C.1.4 Amplitudes

The computation of the amplitudes is divided in two steps. First, the appli-
cation program must call

subroutine new_event (p)

real(kind=default), dimension(0:3,*), intent(in) :: p

logical :: mask_dirty

integer :: hel

end subroutine new_event

which will compute the scattering amplitudes for all combinations of fla-
vors, helicities and color flows for the given set of momenta. This routine
is computationally expensive. Subsequently, the application can inquire the
individual amplitudes for the same momenta with

pure function get_amplitude (flv, hel, col) result (amp_result)

complex(kind=default) :: amp_result

integer, intent(in) :: flv, hel, col

end function get_amplitude

which corresponds to a simple table lookup. If only the color summed am-
plitude is required, the convenience function

pure function color_sum (flv, hel) result (amp2)

integer, intent(in) :: flv, hel

real(kind=default) :: amp2

end function color_sum

can be used after calling new_event (p).
O’Mega makes no assumptions about the values of the fermion masses in

relation to the kinematical invariants. Therefore it can not determine helicity
selection rules analytically. Nevertheless, one can call

subroutine reset_helicity_selection (threshold, cutoff)

real(kind=default), intent(in) :: threshold

integer, intent(in) :: cutoff

end subroutine reset_helicity_selection

to activate a useful heuristic: for the followingN = cutoff calls to new_event
the scattering amplitudes for each helicity will be compared to the average.
Helicities for which this ratio never exceeds threshold * epsilon() will be
assumed to be forbidden. The function
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pure function is_allowed (flv, hel, col) result (yorn)

logical :: yorn

integer, intent(in) :: flv, hel, col

end function is_allowed

can be used the test if the given combination is allowed. The combination of
flavor and color is determined analytically, while the helicity is treated with
the heuristic described above.

C.1.5 Technical

pure function openmp_supported () result (status)

logical :: status

end function openmp_supported

end module omega_amplitude

C.2 C++

A target for the C++ programming language does not exist yet. We are open
for suggestions from C++ experts in HEP on useful calling conventions and
support libraries that blend well with the HEP environments based on these
languages.

D Extending O’Mega

D.1 Adding A New Physics Model

Adding a new model requires to write some OCaml code. This task can
most easily be performed using the interfaces of the Mathematica 2 packages
FeynRules [17] and SARAH [18].

However, implementing a new model from scratch is not very difficult
either. An inspection of src/modellib_SM.ml shows that all that is required
are some tables of Feynman rules that can easily be written by copying and
modifying an existing example, after consulting with src/coupling.mli. In
src/modellib_BSM.ml there is a model Template which is a verbatim copy
of the SM. This could serve as a starting point for modifications. Having
the full power of OCaml at one’s disposal is very helpful for avoiding needless
repetition.

2Mathematica is a registered trademark of Wolfram Research Ltd.
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D.2 Adding A New Target Language

This requires to write OCaml code, which is a straightforward translator of an
abstract syntax tree to linear code. In addition, a suitable library for vertex
expressions must be implemented.
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