
O’Mega:
An Optimizing Matrix Element Generator.

I: Basis Algorithms

Mauro Moretti∗

Dipartimento di Fisica, Università di Ferrara
and INFN, Sezione di Ferrara, Ferrara, Italy

Thorsten Ohl†

Institut für Theoretische Physik und Astrophysik
Julius-Maximilians-Universität Würzburg
Am Hubland, 97074 Würzburg, Germany

Jürgen Reuter‡

Deutsches Elektronen-Synchrotron DESY
Notkestraße 85, 22607 Hamburg, Germany

IKDA 2001/06 LC-TOOL-2001-040 hep-ph/0102195

April 14, 2011

∗moretti@fe.infn.it
†ohl@physik.uni-wuerzburg.de, http://physik.uni-wuerzburg.de/ohl
‡juergen.reuter@desy.de

1

moretti@fe.infn.it
ohl@physik.uni-wuerzburg.de
http://physik.uni-wuerzburg.de/ohl
juergen.reuter@desy.de

Abstract

We sketch the architecture of O’Mega, a new optimizing compiler
for tree amplitudes in quantum field theory, and briefly describe its
usage. O’Mega generates the most efficient code currently available
for scattering amplitudes for many polarized particles in the Standard
Model and its extensions.

1 Introduction

Current and planned experiments in high energy physics can probe physics in
processes with polarized beams and many tagged particles in the final state.
The combinatorial explosion of the number of Feynman diagrams contribut-
ing to scattering amplitudes for many external particles calls for the devel-
opment of more compact representations that translate well to efficient and
reliable numerical code. In gauge theories, the contributions from individ-
ual Feynman diagrams are gauge dependent. Strong numerical cancellations
in a redundant representation built from individual Feynman diagrams lead
to a loss of numerical precision, stressing further the need for eliminating
redundancies.

Due to the large number of processes that have to be studied in order
to unleash the potential of modern experiments, the construction of nearly
optimal representations must be possible algorithmically on a computer and
should not require human ingenuity for each new application.

O’Mega [1, 2, 3] is a compiler for tree-level scattering amplitudes that
satisfies these requirements. O’Mega is independent of the target language
and can therefore create code in any programming language for which a
simple output module has been written. To support a physics model, O’Mega
requires as input only the Feynman rules and the relations among coupling
constants.

Similar to the earlier numerical approaches [4] and [5], O’Mega reduces
the growth in calculational effort from a factorial of the number of particles to
an exponential. The symbolic nature of O’Mega, however, increases its flex-
ibility. Indeed, O’Mega can emulate both [4] and [5] and produces code that
is empirically at least twice as fast. The detailed description of all algorithms
is contained in the extensively commented source code of O’Mega [1].

In this note, we sketch the architecture of O’Mega and describe the usage
of the first version. The building blocks of the representation of scattering
amplitudes generated by O’Mega are described in section 2 and directed
acyclical graphs are introduced in section 3. The algorithm for constructing
the directed acyclical graph is presented in section 4 and its implementation

2

is described in section 6. We conclude with a few results and examples in
section 7. Practical information is presented in the appendices: installation
of the O’Mega software in appendix A, running of the O’Mega compiler in
appendix B and using O’Mega’s output in appendix C. Finally, appendix D
briefly discusses mechanisms for extending O’Mega.

2 One Particle Off Shell Wave Functions

One Particle Off-Shell Wave Functions (1POWs) are obtained from con-
nected Greensfunctions by applying the LSZ reduction formula to all but
one external line while the remaining line is kept off the mass shell

W (x; p1, . . . , pn; q1, . . . , qm) =

〈φ(q1), . . . , φ(qm); out Φ(x) φ(p1), . . . , φ(pn); in〉 . (1)

Depending on the context, the off shell line will either be understood as am-
putated or not. For example, 〈φ(q1), φ(q2); out Φ(x) φ(p1); in〉 in unflavored
scalar φ3-theory is given at tree level by

x

p1 q1

q2 =

x

p1 q1

q2 +

x

p1 q1

q2 +

x

p1 q1

q2 . (2)

The number of distinct momenta that can be formed from n external
momenta is P (n) = 2n−1 − 1. Therefore, the number of tree 1POWs grows
exponentially with the number of external particles and not with a factorial,
as the number of Feynman diagrams, e. g. F (n) = (2n − 5)!! = (2n − 5) ·
. . . 5 · 3 · 1 in unflavored φ3-theory.

At tree-level, the set of all 1POWs for a given set of external momenta
can be constructed recursively

x

n =
∑

k+l=n

x

k l
, (3)

where the sum extends over all partitions of the set of n momenta. This
recursion will terminate at the external wave functions.

For all quantum field theories, there are—well defined, but not unique—
sets of Keystones K [1] such that the sum of tree Feynman diagrams for a

3

given process can be expressed as a sparse sum of products of 1POWs without
double counting. In a theory with only cubic couplings this is expressed as

T =

F (n)∑
i=1

Di =

P (n)∑
k,l,m=1

K3
fkflfm

(pk, pl, pm)Wfk
(pk)Wfl

(pl)Wfm(pm) , (4)

with obvious generalizations. The non-trivial problem is to avoide the double
counting of diagrams like

,

where the circle denotes the keystone. The problem has been solved ex-
plicitely for general theories with vertices of arbitrary degrees [1]. The solu-
tion is inspired by arguments [4] based on the equations of motion (EOM)
of the theory in the presence of sources. The iterative solution of the EOM
leads to the construcion of the 1POWs and the constraints imposed on the
1POWs by the EOM suggest the correct set [4] of partitions {(pk, pl, pm)} in
equation (4).

The maximally symmetric solution selects among equivalent diagrams the
keystone closest to the center of a diagram. This corresponds to the numerical
expressions of [4]. The absence of double counting can be demonstrated by
counting the number F (dmax, n) of unflavored Feynman tree diagrams with n
external legs and vertices of maximum degree dmax in to different ways: once
directly and then as a sum over keystones. The number F̃ (dmax, Nd,n) of
unflavored Feynman tree diagrams for one keystone Nd,n = {n1, n2, . . . , nd},
with n = n1 +n2 + · · ·+nd, is given by the product of the number of subtrees
and symmetry factors

F̃ (dmax, Nd,n) =
n!

|S(Nd,n)|σ(nd, n)

d∏
i=1

F (dmax, ni + 1)

ni!
(5a)

where |S(N)| is the size of the symmetric group of N , σ(n, 2n) = 2 and
σ(n, m) = 1 otherwise. Indeed, it can be verified that the sum over all
keystones reproduces the number

F (dmax, n) =
dmax∑
d=3

∑
N={n1,n2,...,nd}
n1+n2+···+nd=n

1≤n1≤n2≤···≤nd≤bn/2c

F̃ (dmax, N) (5b)

4

of all unflavored Feynman tree diagrams.
A second consistent prescription for the construction of keystones is max-

imally asymmetric and selects the keystone adjacent to a chosen external
line. This prescription reproduces the approach in [5] where the tree-level
Schwinger-Dyson equations are used as a special case of the EOM.

Recursive algorithms for gauge theory amplitudes have been pioneered
in [6]. The use of 1POWs as basic building blocks for the calculation of
scattering amplitudes in tree approximation has been advocated in [7] and a
heuristic procedure, without reference to keystones, for minimizing the num-
ber of arithmetical operations has been suggested. This approach is used by
MADGRAPH [8] for fully automated calculations. The heuristic optimiza-
tions are quite efficient for 2 → 4 processes, but the number of operations
remains bounded from below by the number of Feynman diagrams.

2.1 Ward Identities

A particularly convenient property of the 1POWs in gauge theories is that,
even for vector particles, the 1POWs are ‘almost’ physical objects and satisfy
simple Ward Identities

∂

∂xµ

〈out Aµ(x) in〉amp. = 0 (6a)

for unbroken gauge theories and

∂

∂xµ

〈out Wµ(x) in〉amp. = −mW 〈out φW (x) in〉amp. (6b)

for spontaneously broken gauge theories in Rξ-gauge for all physical external
states in〉 and out〉. Thus the identities (6) can serve as powerful numer-
ical checks both for the consistency of a set of Feynman rules and for the
numerical stability of the generated code. The code for matrix elements can
optionally be instrumented by O’Mega with numerical checks of these Ward
identities for intermediate lines.

3 Directed Acyclical Graphs

The algebraic expression for the tree-level scattering amplitude in terms of
Feynman diagrams is itself a tree. The much slower growth of the set of
1POWs compared to the set of Feynman diagrams shows that this repre-
sentation is extremely redundant. In this case, Directed Acyclical Graphs

5

(DAGs) provide a more efficient representation, as illustrated by a trivial
example

ab(ab + c) =

×
+

× c

a b

×
a b

=

×
+

× c

a b

(7)

where one multiplication is saved. The replacement of expression trees by
equivalent DAGs is part of the repertoire of optimizing compilers, known
as common subexpression elimination. Unfortunately, this approach fails in
practice for all interesting expressions appearing in quantum field theory,
because of the combinatorial growth of space and time required to find an
almost optimal factorization.

However, the recursive definition in equation (3) allows to construct the
DAG of the 1POWs in equation (4) directly [1], without having to construct
and factorize the Feynman diagrams explicitely.

As mentioned above, there is more than one consistent prescription for
constructing the set of keystones [1]. The symbolic expressions constructed
by O’Mega contain the symbolic equivalents of the numerical expressions
computed by [4] (maximally symmetric keystones) and [5] (maximally asym-
metric keystones) as special cases.

4 Algorithm

By virtue of their recursive construction in Eqs. (3), tree-level 1POWs form
a DAG and the problem is to find the smallest DAG that corresponds to
a given tree, (i. e. a given sum of Feynman diagrams). O’Mega’s algorithm
proceeds in four steps ‘

Grow: starting from the external particles, build the tower of all
1POWs up to a given height (the height is less than the number
of external lines for asymmetric keystones and less than half of
that for symmetric keystones) and translate it to the equivalent
DAG D.

Select: from D, determine all possible flavored keystones for
the process under consideration and the 1POWs appearing in
them.

Harvest: construct a sub-DAG D∗ ⊆ D consisting only of nodes
that contribute to the 1POWs appearing in the flavored key-
stones.

6

Calculate: multiply the 1POWs as specified by the keystones
and sum the keystones.

By construction, the resulting expression contains no more redundancies and
can be translated to a numerical expression. In general, asymmetric key-
stones create an expression that is smaller by a few percent than the result
from symmetric keystones, but it is not yet clear which approach produces
the numerically more robust results.

The details of this algorithm as implemented in O’Mega are described in
the source code [1]. The persistent data structures [10] used for the determi-
nation of D∗ are very efficient so that the generation of, e. g. Fortran code for
amplitudes in the Standard Model is always much faster than the subsequent
compilation.

5 Color

� We will implement a variation of numeric color diagonalization [9].

� Here’s a sketch of the algorithm:

1. expand the DAG D to a list L of trees

2. numerically calculate the matrix C of color factors for the squared
matrix element

3. diagonalize C

4. tag the wave functions in D by the list of their appearances in L

5. for each wavefunction in D, calculate the coefficients of the eigen-
vectors corresponding to non-zero eigenvalues of C

6. (like for Fermi statistics) keep only the factors that are not already
in the daughter wave functions

� This multiplies the complexity of the colorless amplitude by the number
of eigenvectors with non-zero eigenvalues of C. Asymptotically, this will
beat [8], but it is not obvious where the break even point is for many
eigenvectors. Therefore more precise estimates will be useful . . .

� The same approach might be workable for spin and flavor sums. The
gains are not obvious (they depend on the number of eigenamplitudes),
but they could be huge.

7

For the sums over Feynman diagrams, color eigenamplitudes and wave
functions, we introduce the following conventions:

i ∈ {1, 2, . . . , NFD} (8a)

a ∈ {1, 2, . . . , Nev, . . . , NFD} (8b)

n ∈ {1, 2, . . . , NWF} (8c)

A wavefunction is given by a sum over all Feynman diagrams

Wn =
∑

i

wn,i = 〈0 φ n〉 (9)

where
wn,i = 〈0 φ n〉diagram #i (10)

corresponds to the contribution of diagram i to the wavefunction Wn.

Aa =
∑

i

caiai (11)

Wn,a =
∑

i

caiwn,i (12)

and
wn,i =

∑
a

(c−1)iaWn,a (13)

Fusion coefficients

Fa,bc =
∑

i

cai(c
−1)ib(c

−1)ic (14a)

Fa,bcd =
∑

i

cai(c
−1)ib(c

−1)ic(c
−1)id (14b)

can be calculated numerically, since cai can be extended to a non-singular
square matrix, even if we need only small part of it.

6 Implementation

The O’Mega compiler is implemented in O’Caml [11], a functional program-
ming language of the ML family with a very efficient, portable and freely
available implementation, that can be bootstrapped on all modern comput-
ers in a few minutes. The library modules built on experience from [12, 13].

8

The powerful module system of O’Caml allows an efficient and concise
implementation of the DAGs for a specific physics model as a functor appli-
cation [1]. This functor maps from the category of trees to the category of
DAGs and is applied to the set of trees defined by the Feynman rules of any
model under consideration.

The module system of O’Caml has been used to make the combinato-
rial core of O’Mega demonstrably independent from the specifics of both the
physics model and the target language [1], as shown in Figure 1. A For-
tran90/95 backend has been realized first, backends for C++ and Java will
follow. The complete electroweak Standard Model has been implemented to-
gether with anomalous gauge boson couplings. Recently, the Minimal Super-
symmetric Standard Model (MSSM) has been added. The implementation
of interfering color amplitudes is currently being completed.

Many extensions of the Standard Model, most prominently the MSSM,
contain Majorana fermions. In this case, fermion lines have no canonical
orientation and the determination of the relative signs of interfering am-
plitudes is not trivial. However, the Feynman rules for Majorana fermions
and fermion number violating interactions proposed in [14] have been imple-
mented in O’Mega in analogy to the naive Feynman rules for Dirac fermions
and both methods are available. Numerical comparisons of amplitudes for
Dirac fermions calculated both ways show agreement at a small multiple of
the machine precision.

As mentioned above, the compilers for the target programming language
are the slowest step in the generation of executable code. On the other
hand, the execution speed of the code is limited by non-trivial vertex eval-
uations for vectors and spinors, which need O(10) complex multiplications.
Therefore, an O’Mega Virtual Machine can challenge native code and avoid
compilations.

7 Results

7.1 Examples

Tables 1 and 2 show the reduction in computational complexity for some
important processes at a e+e−-linear collider including radiative corrections.
Using the asymmetric keystones can reduce the number of vertices by some 10
to 20 percent relativ to the quoted numbers for symmetric keystones.

9

Figure 1: Module dependencies in O’Mega. The diamond shaped nodes
denote abstract signatures defining functor domains and co-domains. The
rectangular boxes denote modules and functors, while oval boxes stand for
example applications.

10

process Diagrams O’Mega
vertices #prop. vertices

e+e− → e+ν̄edū 20 80 14 45
e+e− → e+ν̄edūγ 146 730 36 157
e+e− → e+ν̄edūγγ 1256 7536 80 462
e+e− → e+ν̄edūγγγ 12420 86940 168 1343
e+e− → e+ν̄edūγγγγ 138816 1110528 344 3933

Table 1: Radiative corrections to four fermion production: comparison of
the computational complexity of scattering amplitudes obtained from Feyn-
man diagrams and from O’Mega. (The counts correspond to the full Stan-
dard Model—sans light fermion Yukawa couplings—in unitarity gauge with
quartic couplings emulated by cubic couplings of non-propagating auxiliary
fields.)

process Diagrams O’Mega
vertices #prop. vertices

e+e− → e+ν̄edūbb̄ 472 2832 49 232
e+e− → e+ν̄edūbb̄γ 4956 34692 108 722
e+e− → e+ν̄edūbb̄γγ 58340 466720 226 2212

Table 2: Radiative corrections to six fermion production: comparison of
the computational complexity of scattering amplitudes obtained from Feyn-
man diagrams and from O’Mega. (The counts correspond to the full Stan-
dard Model—sans light fermion Yukawa couplings—in unitarity gauge with
quartic couplings emulated by cubic couplings of non-propagating auxiliary
fields.)

11

7.2 Comparisons

HELAC’s [5] diagnostics report more vertices than O’Mega for identical am-
plitudes. This ranges from comparable numbers for Standard Model pro-
cesses with many different flavors to an increase by 50 percent for processes
with many identical flavors. Empirically, O’Mega’s straight line code is twice
as fast as HELAC’s DO-loops for identical optimizing Fortran95 compilers
(not counting HELAC’s initialization phase). Together this results in an
improved performance by a factor of two to three.

The numerical efficiency of O’Mega’s Fortran95 runtime library is empir-
ically identical to HELAS [7]. Therefore, O’Mega’s performance can directly
be compared to MADGRAPH’s [8] by comparing the number of vertices. For
2 → 5-processes in the Standard Model, O’Mega’s advantage in performance
is about a factor of two and grows from there.

The results have been compared with MADGRAPH [8] for many Stan-
dard Model processes and numerical agreement at the level of 10−11 has been
found with double precision floating point arithmetic.

7.3 Applications

O’Mega generated amplitudes are used in the omnipurpose event generator
generator WHIZARD [15]. The first complete experimental study of vector
boson scattering in six fermion production for linear collider physics [16] was
facilitated by O’Mega and WHIZARD.

Acknowledgements

We thank Mauro Moretti for fruitful discussions of the ALPHA algorithm [4],
that inspired our solution of the double counting problem.

We thank Wolfgang Kilian for providing the WHIZARD environment
that turns our numbers into real events with unit weight. Thanks to the
ECFA/DESY workshops and their participants for providing a showcase.
Part of this research was supported by Bundesministerium für Bildung und
Forschung, Germany, (05HT9RDA) and Deutsche Forschungsgemeinschaft
(MA676/6-1).

Finally, thanks to the Caml and Objective Caml teams at INRIA for the
lean and mean implementation of a programming language that does not
insult the programmer’s intelligence.

12

References

[1] M. Moretti, T. Ohl, J. Reuter, C. Schwinn, O’Mega, Version 1.0:
An Optimizing Matrix Element Generator, Long Write Up and User’s
Manual (in progress), http://theorie.physik.uni-wuerzburg.de/

~ohl/omega/doc/.

[2] T. Ohl, O’Mega: An Optimizing Matrix Element Generator, Proceed-
ings of the Workshop on Advanced Computing and Analysis Technics
in Physics Research, Fermilab, October 2000, IKDA 2000/30, http:

//arXiv.org/abs/hep-ph/0011243hep-ph/0011243.

[3] T. Ohl, O’Mega & WHIZARD: Monte Carlo Event Generator Genera-
tion For Future Colliders, Proceedings of the Workshop on Physics and
Experimentation with Future Linear e+e−-Colliders (LCWS2000), Fer-
milab, October 2000, IKDA 2000/31, http://arXiv.org/abs/hep-ph/
0011287hep-ph/0011287.

[4] F. Caravaglios and M. Moretti, Phys. Lett. B358 (1995) 332 [hep-
ph/9507237]. F. Caravaglios, M. Moretti, Z. Phys. C74 (1997) 291.

[5] A. Kanaki, C. Papadopoulos, DEMO-HEP-2000/01, http://arXiv.

org/abs/hep-ph/0002082hep-ph/0002082, February 2000.

[6] F. A. Berends and W. T. Giele, Nucl. Phys. B306 (1988) 759.

[7] H. Murayama, I. Watanabe, K. Hagiwara, KEK Report 91-11, January
1992.

[8] T. Stelzer, W.F. Long, Comput. Phys. Commun. 81 (1994) 357.

[9] V. Barger, A. L. Stange, R. J. N. Phillips, Phys. Rev. D45, (1992) 1751.

[10] Chris Okasaki, Purely Functional Data Structures, Cambridge Univer-
sity Press, 1998.

[11] Xavier Leroy, The Objective Caml System, Release 3.01, Documentation
and User’s Guide, Technical Report, INRIA, 2001, http://pauillac.
inria.fr/ocaml/.

[12] T. Ohl, Lord of the Rings, (Computer algebra library for O’Caml, un-
published).

[13] T. Ohl, Bocages, (Feynman diagram library for O’Caml, unpublished).

13

http://theorie.physik.uni-wuerzburg.de/~ohl/omega/doc/
http://theorie.physik.uni-wuerzburg.de/~ohl/omega/doc/
http://arXiv.org/abs/hep-ph/0011243
http://arXiv.org/abs/hep-ph/0011243
http://arXiv.org/abs/hep-ph/0011287
http://arXiv.org/abs/hep-ph/0011287
http://arXiv.org/abs/hep-ph/0002082
http://arXiv.org/abs/hep-ph/0002082
http://pauillac.inria.fr/ocaml/
http://pauillac.inria.fr/ocaml/

[14] A. Denner, H. Eck, O. Hahn and J. Küblbeck, Phys. Lett. B291 (1992)
278; Nucl. Phys. B387 (1992) 467.

[15] W. Kilian, WHIZARD 1.0: A generic Monte-Carlo integra-
tion and event generation package for multi-particle processes,
http://www-ttp.physik.uni-karlsruhe.de/Progdata/whizard/,
LC-TOOL-2001-039.

[16] R. Chierici, S. Rosati, and M. Kobel, Strong Electroweak Symmetry
Breaking Signals in WW Scattering at TESLA, LC-PHSM-2001-038.

[17] E. E. Boos et al, CompHEP - a package for evaluation of Feyn-
man diagrams and integration over multi-particle phase space, http:

//arXiv.org/abs/hep-ph/9908288hep-ph/9908288.

A Installing O’Mega

A.1 Sources

O’Mega is Free Software and the sources can be obtained from http://www.

hepforge.org/downloads/whizard. Standalone sources are distributed as
tarballs omega-version.tar.gz. They are also contained in the subdirec-
tory src/omega of the WHIZARD tarballs whizard-version.tar.gz with
identical version number.

The command

zcat omega-2.0.3.tar.gz | tar xf -

will unpack the source code, build environment, test suites and documenta-
tion to the directory omega-2.0.3. Interesting subdirectories are

src contains the unabridged and uncensored sources of O’Mega,
including comments,

share/doc contains LATEX sources of user documentation,

tests contains regression tests, which can be run by make check

after building O’Mega.

14

http://www-ttp.physik.uni-karlsruhe.de/Progdata/whizard/
http://arXiv.org/abs/hep-ph/9908288
http://arXiv.org/abs/hep-ph/9908288
http://www.hepforge.org/downloads/whizard
http://www.hepforge.org/downloads/whizard

A.2 Prerequisites

A.2.1 Objective Caml (a. k. a. O’Caml)

O’Mega needs version 3.10 or higher, which is part of most Linux distri-
butions. You can also get it from http://caml.inria.fr/. If necessary,
building O’Caml from source is straightforward (just follow the instructions
in the file INSTALL in the toplevel directory, the defaults are almost always
sufficient) and takes a few minutes minutes on a modern desktop system. If
available for your system (cf. the file README in the toplevel directory), you
should build the native code compiler.

A.2.2 Fortran90/95 Compiler

Not required for compiling or running O’Mega, but Fortran90/95 is currently
the only fully supported target language.

Code generated by O’Mega is known to be compiled correctly with recent
versions of the GNU Fortran compiler gfortran (preferably version 4.5.0 or
later, which a required by WHIZARD 2.x) and the NAG Fortran compiler.

A.3 Building O’Mega

O’Mega uses the GNU autotools [?].
Before the next step, O’Caml must have been installed. Configuration is

performed automatically by testing some system features with the command

$./configure

See

$./configure --help

for additional options. NB: The use of the options --enable-gui and
--enable-unsupported is strongly discouraged. The resulting programs
require additional prerequisites and even if you can get them to compile, the
results are unpredictable and we will not answer any questions about them.
NB: configure keeps it’s state in config.cache. If you want to reconfigure
after adding new libraries to your system, you should remove config.cache

before running configure.
The command

$ make bin

will build the byte code executables. For each pairing of physics model and
target language, there will be one executable.

15

http://caml.inria.fr/
INSTALL
README
--enable-gui
--enable-unsupported
configure
config.cache
config.cache
configure

$ make opt

will build the native code executables if the sytem is supported by O’Caml’s
native code compiler and it is installed. The command

$ make f95

will build the Fortran90/95 library and requires, obviously, a Fortran90/95
compiler.

B Running O’Mega

O’Mega is a simple application that takes parameters from the commandline
and writes results to the standard output device1 (diagnostics go to the
standard error device). E. g., the UNIX commandline

$./bin/f90_SM.opt e+ e- e+ nue ubar d > cc20_amplitude.f95

will cause O’Mega to write a Fortran95 module containing the Standard
Model tree level scattering amplitude for e+e− → e+νeūd to the file cc20_

amplitude.f95. Particles can be combined with colons. E. g.,

$./bin/f90_SM.opt ubar:u:dbar:d ubar:u:dbar:d e+:mu+ e-:mu- > dy.f95

will cause O’Mega to write a Fortran95 module containing the Standard
Model tree level parton scattering amplitudes for all Drell-Yan processes to
the file dy.f95.

A synopsis of the available options, in particular the particle names, can
be requested by giving an illegal option, e. g.:

$./bin/f90_SM.opt -?

./bin/f90_SM.opt: unknown option ‘-?’.

usage: ./bin/f90_SM.opt [options] [e-|nue|u|d|e+|nuebar|ubar|dbar\

|mu-|numu|c|s|mu+|numubar|cbar|sbar|tau-|nutau|t|b\

|tau+|nutaubar|tbar|bbar|A|Z|W+|W-|g|H|phi+|phi-|phi0]

-target:function function name

-target:90 don’t use Fortran95 features that are not in Fortran90

-target:kind real and complex kind (default: default)

-target:width approx. line length

-target:module module name

1In the future, other targets than Fortran90/95 might require more than one output
file (e. g. source files and header files for C/C++). In this case the filenames will be specified
by commandline parameters.

16

cc20_amplitude.f95
cc20_amplitude.f95
dy.f95

-target:use use module

-target:whizard include WHIZARD interface

-model:constant_width use constant width (also in t-channel)

-model:fudged_width use fudge factor for charge particle width

-model:custom_width use custom width

-model:cancel_widths use vanishing width

-warning: check arguments and print warning on error

-error: check arguments and terminate on error

-warning:a check # of input arguments and print warning on error

-error:a check # of input arguments and terminate on error

-warning:h check input helicities and print warning on error

-error:h check input helicities and terminate on error

-warning:m check input momenta and print warning on error

-error:m check input momenta and terminate on error

-warning:g check internal Ward identities and print warning on error

-error:g check internal Ward identities and terminate on error

-forest ???

-revision print revision control information

-quiet don’t print a summary

-summary print only a summary

-params print the model parameters

-poles print the Monte Carlo poles

-dag print minimal DAG

-full_dag print complete DAG

-file read commands from file

B.1 General Options

-warning: include code that checks the supplied arguments and
prints a warning in case of an error.

-warning:a check the number of input arguments (momenta and
spins) and print a warning in case of an error.

-warning:h check the values of the input helicities and print a
warning in case of an error.

-warning:m check the values of the input momenta and print a
warning in case of an error.

-warning:g check internal Ward identities and print a warning
in case of an error (not supported yet!).

17

-error: like -warning: but terminates on error.

-error:a like -warning:a but terminates on error.

-error:h like -warning:h but terminates on error.

-error:m like -warning:m but terminates on error.

-error:g like -warning:g but terminates on error.

-revision print revision control information

-quiet don’t print a summary

-summary print only a summary

-params print the model parameters

-poles print the Monte Carlo poles in a format understood by
the WHIZARD program [15].

-dag print the reduced DAG in a format understood by the dot

program.

-full dag print the complete DAG in a format understood by
the dot program.

-file read commands from file

B.2 Model Options

B.2.1 Standard Model

-model:constant width use constant width (also in t-channel)

-model:fudged width use fudge factor for charge particle width

-model:custom width use custom width

-model:cancel widths use vanishing width

18

B.3 Target Options

B.3.1 Fortran90/95

-target:function function name

-target:90 don’t use Fortran95 features that are not in For-
tran90

-target:kind real and complex kind (default: default)

-target:width approx. line length

-target:module module name

-target:use use module

-target:whizard include WHIZARD interface

C Using O’Mega’s Output

The structure of the outputfile, the calling convention and the required li-
braries depends on the target language, of course.

C.1 Fortran90/95

The Fortran95 module written by O’Mega has the following signature

module omega_amplitude

C.1.1 Libraries

The imported Fortran modules are

omega kinds defines default, which can be whatever the For-
tran compiler supports. NB: the support libraries have not yet
been tuned to give reliable answers for amplitudes with gauge
cancellations in single precision.

omega95 defines the vertices for Dirac spinors in the chiral repre-
sentation and vectors.

omega95 bispinors is an alternative that defines the vertices for
Dirac and Majorana spinors in the chiral representation and
vectors using the Feynman rules of [14].

19

omega parameters defines the coupling constants

use kinds

use omega95

use omega_parameters

implicit none

private

C.1.2 Summary of Exported Functions

The functions and subroutines experted by the Fortran95 module are

• the scattering amplitude in different flavor bases (arrays of PDG codes
or internal numbering):

public :: amplitude, amplitude_f, amplitude_1, amplitude_2

• square root of the inverse Bose/Fermi symmetry factor for identical
particles in the final state

public :: symmetry

NB: the amplitude returned in amplitude is always divided by the
square root of the Bose/Fermi symmetry factor for identical particles
in the final state, as required for phase space integration of the squared
matrix element and differential cross section.

1√∏
k nk!

A(i1i2 → f1f2 . . .) (15)

The symmetry function can be used to recover the “true” scattering
amplitude A for checking Ward identities, etc.

pure function true_amplitude (k, s, f) result (a)

real(kind=default), dimension(0:,:), intent(in) :: k

integer, dimension(:), intent(in) :: s, f

complex(kind=default) :: a

a = symmetry (f) * amplitude (k, s, f)

end function true_amplitude

It should never be required for differential cross sections.

20

• the scattering amplitude with heuristics supressing vanishing helicity
combinations:

public :: amplitude_nonzero, amplitude_f_nonzero, &

amplitude_1_nonzero, amplitude_2_nonzero

• the squared scattering amplitude summed over helicity states

public :: spin_sum_sqme, spin_sum_sqme_1, sum_sqme

public :: spin_sum_sqme_nonzero, spin_sum_sqme_1_nonzero, &

sum_sqme_nonzero

• “scattering” a general density matrix

public :: scatter, scatter_nonzero

• “scattering” a diagonal density matrix

public :: scatter_diagonal, scatter_diagonal_nonzero

• inquiry and maintenance functions

public :: allocate_zero

public :: multiplicities, multiplicities_in, multiplicities_out

public :: number_particles, &

number_particles_in, number_particles_out

public :: number_spin_states, &

number_spin_states_in, number_spin_states_out, &

spin_states, spin_states_in, spin_states_out

public :: number_flavor_states, &

number_flavor_states_in, number_flavor_states_out, &

flavor_states, flavor_states_in, flavor_states_out

public :: number_flavor_zeros, &

number_flavor_zeros_in, number_flavor_zeros_out, &

flavor_zeros, flavor_zeros_in, flavor_zeros_out

public :: create, reset, destroy

21

C.1.3 Maintenance Functions

They currently do nothing, but are here for WHIZARD’s [15] convenience

create is called only once at the very beginning.

reset is called whenever parameters are changed.

destroy is called at most once at the very end.

subroutine create ()

end subroutine create

subroutine reset ()

end subroutine reset

subroutine destroy ()

end subroutine destroy

Allocate an array of the size used by the heuristic that suppresses vanishing
helicity combinations

interface allocate_zero

module procedure allocate_zero_1, allocate_zero_2

end interface

for join numbering of in and out states

subroutine allocate_zero_1 (zero)

integer, dimension(:,:), pointer :: zero

end subroutine allocate_zero_index

and for separate numbering of in and out states

subroutine allocate_zero_2 (zero)

integer, dimension(:,:,:,:), pointer :: zero

end subroutine allocate_zero_index_inout

C.1.4 Inquiry Functions

The total number of particles, the number of incoming particles and the
number of outgoing particles:

22

pure function number_particles () result (n)

integer :: n

end function number_particles

pure function number_particles_in () result (n)

integer :: n

end function number_particles_in

pure function number_particles_out () result (n)

integer :: n

end function number_particles_out

The spin states of all particles that can give non-zero results and their num-
ber. The tables are interpreted as

s(1:,i) contains the helicities for each particle for the ith helic-
ity combination.

pure function number_spin_states () result (n)

integer :: n

end function number_spin_states

pure subroutine spin_states (s)

integer, dimension(:,:), intent(inout) :: s

end subroutine spin_states

The spin states of the incoming particles that can give non-zero results and
their number:

pure function number_spin_states_in () result (n)

integer :: n

end function number_spin_states_in

pure subroutine spin_states_in (s)

integer, dimension(:,:), intent(inout) :: s

end subroutine spin_states_in

The spin states of the outgoing particles that can give non-zero results and
their number:

pure function number_spin_states_out () result (n)

integer :: n

end function number_spin_states_out

pure subroutine spin_states_out (s)

integer, dimension(:,:), intent(inout) :: s

end subroutine spin_states_out

23

The flavor combinations of all particles that can give non-zero results and
their number. The tables are interpreted as

f(1:,i) contains the PDG particle code for each particle for the
ith helicity combination.

pure function number_flavor_states () result (n)

integer :: n

end function number_flavor_states

pure subroutine flavor_states (f)

integer, dimension(:,:), intent(inout) :: f

end subroutine flavor_states

The flavor combinations of the incoming particles that can give non-zero
results and their number.

pure function number_flavor_states_in () result (n)

integer :: n

end function number_flavor_states_in

pure subroutine flavor_states_in (f)

integer, dimension(:,:), intent(inout) :: f

end subroutine flavor_states_in

The flavor combinations of the outgoing particles that can give non-zero
results and their number.

pure function number_flavor_states_out () result (n)

integer :: n

end function number_flavor_states_out

pure subroutine flavor_states_out (f)

integer, dimension(:,:), intent(inout) :: f

end subroutine flavor_states_out

The flavor combinations of all particles that always can give a zero result
and their number:

pure function number_flavor_zeros () result (n)

integer :: n

end function number_flavor_zeros

pure subroutine flavor_zeros (f)

integer, dimension(:,:), intent(inout) :: f

end subroutine flavor_zeros

24

The flavor combinations of the incoming particles that always can give a zero
result and their number:

pure function number_flavor_zeros_in () result (n)

integer :: n

end function number_flavor_zeros_in

pure subroutine flavor_zeros_in (f)

integer, dimension(:,:), intent(inout) :: f

end subroutine flavor_zeros_in

The flavor combinations of the outgoing particles that always can give a zero
result and their number:

pure function number_flavor_zeros_out () result (n)

integer :: n

end function number_flavor_zeros_out

pure subroutine flavor_zeros_out (f)

integer, dimension(:,:), intent(inout) :: f

end subroutine flavor_zeros_out

The same initial and final state can appear more than once in the tensor
product and we must avoid double counting.

pure subroutine multiplicities (a)

integer, dimension(:), intent(inout) :: a

end subroutine multiplicities

pure subroutine multiplicities_in (a)

integer, dimension(:), intent(inout) :: a

end subroutine multiplicities_in

pure subroutine multiplicities_out (a)

integer, dimension(:), intent(inout) :: a

end subroutine multiplicities_out

C.1.5 Amplitude

The function arguments of of the amplitude are

k(0:3,1:) are the particle momenta: k(0:3,1) and k(0:3,2)

are the incoming momenta, k(0:3,3:) are the outgoing mo-
menta. All momenta are the physical momenta, i. e. forward
time-like or light-like. The signs of the incoming momenta are
flipped internally. Unless asked by a commandline parameter,
O’Mega will not check the validity of the momenta.

25

s(1:) are the helicities in the same order as the momenta. s = ±1
signify s = ±1/2 for fermions. s = 0 makes no sense for
fermions and massless vector bosons s = 4 signifies an un-
physical polarization for vector boson that the users are not
supposed to use. Unless asked by a commandline parameter,
O’Mega will not check the validity of the helicities.

f(1:) are the PDG particle codes in the same order as the mo-
menta.

pure function amplitude (k, s, f) result (amp)

real(kind=default), dimension(0:,:), intent(in) :: k

integer, dimension(:), intent(in) :: s, f

complex(kind=default) :: amp

end function amplitude

Identical to amplitude (k, s, flavors(:,f)), where flavors has been
filled by flavor_states:

pure function amplitude_f (k, s, f) result (amp)

real(kind=default), dimension(0:,:), intent(in) :: k

integer, dimension(:), intent(in) :: s

integer, intent(in) :: f

complex(kind=default) :: amp

end function amplitude_f

Identical to amplitude (k, spins(:,s), flavors(:,f)), where spins has
been filled by spin_states and flavors has been filled by flavor_states:

pure function amplitude_1 (k, s, f) result (amp)

real(kind=default), dimension(0:,:), intent(in) :: k

integer, intent(in) :: s, f

complex(kind=default) :: amp

end function amplitude_1

Similar to amplitude_1, but with separate incoming and outgoing particles:

pure function amplitude_2 &

(k, s_in, f_in, s_out, f_out) result (amp)

real(kind=default), dimension(0:,:), intent(in) :: k

integer, intent(in) :: s_in, f_in, s_out, f_out

complex(kind=default) :: amp

end function amplitude_2

26

The following are subroutines and not functions, since Fortran95 restricts ar-
guments of pure functions to intent(in), but we need to update the counter
for vanishing amplitudes.

zero(1:,1:) an array containing the number of times a combi-
nation of spin index and flavor index yielded a vanishing am-
plitude. After a certain threshold, these combinations will be
skipped. allocate_zero will allocate the correct size.

n the current event count

pure subroutine amplitude_nonzero (amp, k, s, f, zero, n)

complex(kind=default), intent(out) :: amp

real(kind=default), dimension(0:,:), intent(in) :: k

integer, dimension(:), intent(in) :: s, f

integer, dimension(:,:), intent(inout) :: zero

integer, intent(in) :: n

end subroutine amplitude_nonzero

pure subroutine amplitude_1_nonzero (amp, k, s, f, zero, n)

complex(kind=default), intent(out) :: amp

real(kind=default), dimension(0:,:), intent(in) :: k

integer, intent(in) :: s, f

integer, dimension(:,:), intent(inout) :: zero

integer, intent(in) :: n

end subroutine amplitude_1_nonzero

pure subroutine amplitude_f_nonzero &

(amp, k, s, f, zero, n)

complex(kind=default), intent(out) :: amp

real(kind=default), dimension(0:,:), intent(in) :: k

integer, dimension(:), intent(in) :: s

integer, intent(in) :: f

integer, dimension(:,:), intent(inout) :: zero

integer, intent(in) :: n

end subroutine amplitude_f_nonzero

zero(1:,1:,1:,1:) an array containing the number of times a
combination of incoming and outgoing spin indices and flavor
indices yielded a vanishing amplitude. allocate_zero will al-
locate the correct size.

27

pure subroutine amplitude_2_nonzero &

(amp, k, s_in, f_in, s_out, f_out, zero, n)

complex(kind=default), intent(out) :: amp

real(kind=default), dimension(0:,:), intent(in) :: k

integer, intent(in) :: s_in, f_in, s_out, f_out

integer, dimension(:,:,:,:), intent(inout) :: zero

integer, intent(in) :: n

end subroutine amplitude_2_nonzero

pure function symmetry (f) result (s)

real(kind=default) :: s

integer, dimension(:), intent(in) :: f

end function symmetry

C.1.6 Summation

The the sums of squared matrix elements, the optional mask smask can be
used to sum only a subset of helicities or flavors.

pure function spin_sum_sqme (k, f, smask) result (amp2)

real(kind=default), dimension(0:,:), intent(in) :: k

integer, dimension(:), intent(in) :: f

logical, dimension(:), intent(in), optional :: smask

real(kind=default) :: amp2

end function spin_sum_sqme

pure function spin_sum_sqme_1 (k, f, smask) result (amp2)

real(kind=default), dimension(0:,:), intent(in) :: k

integer, intent(in) :: f

logical, dimension(:), intent(in), optional :: smask

real(kind=default) :: amp2

end function spin_sum_sqme_1

pure function sum_sqme (k, smask, fmask) result (amp2)

real(kind=default), dimension(0:,:), intent(in) :: k

logical, dimension(:), intent(in), optional :: smask, fmask

real(kind=default) :: amp2

end function sum_sqme

28

smask

pure subroutine spin_sum_sqme_nonzero (amp2, k, f, zero, n, smask)

real(kind=default), intent(out) :: amp2

real(kind=default), dimension(0:,:), intent(in) :: k

integer, dimension(:), intent(in) :: f

integer, dimension(:,:), intent(inout) :: zero

integer, intent(in) :: n

logical, dimension(:), intent(in), optional :: smask

end subroutine spin_sum_sqme_nonzero

pure subroutine spin_sum_sqme_1_nonzero (amp2, k, f, zero, n, smask)

real(kind=default), intent(out) :: amp2

real(kind=default), dimension(0:,:), intent(in) :: k

integer, intent(in) :: f

integer, dimension(:,:), intent(inout) :: zero

integer, intent(in) :: n

logical, dimension(:), intent(in), optional :: smask

end subroutine spin_sum_sqme_1_nonzero

pure subroutine sum_sqme_nonzero (amp2, k, zero, n, smask, fmask)

real(kind=default), intent(out) :: amp2

real(kind=default), dimension(0:,:), intent(in) :: k

integer, dimension(:,:), intent(inout) :: zero

integer, intent(in) :: n

logical, dimension(:), intent(in), optional :: smask, fmask

end subroutine sum_sqme_masked_nonzero

C.1.7 Density Matrix Transforms

There are also utility functions that implement the transformation of density
matrices directly

ρ → ρ′ = TρT † (16)

i. e.
ρ′ff ′ =

∑
ii′

Tfiρii′T
∗
f ′i′ (17)

and avoid double counting

pure subroutine scatter_correlated (k, rho_in, rho_out)

real(kind=default), dimension(0:,:), intent(in) :: k

complex(kind=default), dimension(:,:,:,:), &

intent(in) :: rho_in

29

complex(kind=default), dimension(:,:,:,:), &

intent(inout) :: rho_out

end subroutine scatter_correlated

pure subroutine scatter_correlated_nonzero &

(k, rho_in, rho_out, zero, n)

real(kind=default), dimension(0:,:), intent(in) :: k

complex(kind=default), dimension(:,:,:,:), &

intent(in) :: rho_in

complex(kind=default), dimension(:,:,:,:), &

intent(inout) :: rho_out

integer, dimension(:,:,:,:), intent(inout) :: zero

integer, intent(in) :: n

end subroutine scatter_correlated_nonzero

In no off-diagonal density matrix elements of the initial state are known, the
computation can be performed more efficiently:

ρ′f =
∑

i

TfiρiT
∗
fi =

∑
i

|Tfi|2ρi (18)

pure subroutine scatter_diagonal (k, rho_in, rho_out)

real(kind=default), dimension(0:,:), intent(in) :: k

real(kind=default), dimension(:,:), intent(in) :: rho_in

real(kind=default), dimension(:,:), intent(inout) :: rho_out

end subroutine scatter_diagonal

pure subroutine scatter_diagonal_nonzero &

(k, rho_in, rho_out, zero, n)

real(kind=default), dimension(0:,:), intent(in) :: k

real(kind=default), dimension(:,:), intent(in) :: rho_in

real(kind=default), dimension(:,:), intent(inout) :: rho_out

integer, dimension(:,:,:,:), intent(inout) :: zero

integer, intent(in) :: n

end subroutine scatter_diagonal_nonzero

Finis.

end module omega_amplitude

NB: the name of the module can be changed by a commandline parameter
and Fortran95 features like pure can be disabled as well.

30

C.2 FORTRAN77

The preparation of a FORTRAN77 target is straightforward, but tedious and
will only be considered if there is sufficient demand and support.

C.3 HELAS

This target for the HELAS library [7] is incomplete and no longer maintained.
It was used as an early benchmark for the Fortran90/95 library. No vector
boson selfcouplings are supported.

C.4 C, C++ & Java

These targets does not exist yet and we solicit suggestions from C++ and
Java experts on useful calling conventions and suppport libraries that blend
well with the HEP environments based on these languages. At least one of
the authors believes that Java would be a better choice, but the political
momentum behind C++ might cause an early support for C++ anyway.

D Extending O’Mega

D.1 Adding A New Physics Model

Currently, this still requires to write O’Caml code. This is not as hard
as it might sound, because an inspection of bin/models.ml shows that all
that is required are some tables of Feynman rules that can easily be written
by copying and modifyng an existing example, after consulting with src/

couplings.mli or the corresponding chapter in the woven source. In fact,
having the full power of O’Caml at one’s disposal is very helpful for avoiding
needless repetition.

Nevertheless, in the near future, there will be some special models that
can read model specifications from external files. The first one of its kind
will read CompHEP [17] model files. Later there will be a native O’Mega
model file format, but it will probably go through some iterations.

D.2 Adding A New Target Language

This will always require to write O’Caml code, which is again not too hard.
In addition a library for vertices will be required, unless the target performs
complete inlining. NB: an early experiment with inlining Fortran proved to
be an almost complete failure on Linux/Intel PCs. The inlined code was

31

bin/models.ml
src/couplings.mli
src/couplings.mli

huge, absolutely unreadable and only marginally faster. The bulk of the
computational cost is always in the vertex evaluations and function calls
create in comparison negligible costs. This observation is system dependent,
of course, and inlining might be beneficial for other architectures with better
floating point performance, after all.

32

	Introduction
	One Particle Off Shell Wave Functions
	Ward Identities

	Directed Acyclical Graphs
	Algorithm
	Color
	Implementation
	Results
	Examples
	Comparisons
	Applications

	Installing O'Mega
	Sources
	Prerequisites
	Objective Caml (a.k.a. O'Caml)
	Fortran90/95 Compiler

	Building O'Mega

	Running O'Mega
	General Options
	Model Options
	Standard Model

	Target Options
	Fortran90/95

	Using O'Mega's Output
	Fortran90/95
	Libraries
	Summary of Exported Functions
	Maintenance Functions
	Inquiry Functions
	Amplitude
	Summation
	Density Matrix Transforms

	FORTRAN77
	HELAS
	C, C++ & Java

	Extending O'Mega
	Adding A New Physics Model
	Adding A New Target Language

