
November 1997

gamelan:

Graphical Analysis macros

for the MetaPost Language

MANUAL

Wolfgang Kilian1

Institut für Theoretische Physik
Philosophenweg 16, Universität Heidelberg

D-69120 Heidelberg, Germany

PRELIMINARY DRAFT
April 14, 2011

ABSTRACT

gamelan is a package for data and function plotting within a LATEX document.
It is based on macros written in MetaPost, originally derived from John
Hobby’s ‘graph.mp‘ macro package. This manual describes version 0.40.

1kilian@x4u2.desy.de

Contents

1 The LATEX interface 2
1.1 Using gamelan . 2
1.2 The gmlfile environment 2

1.2.1 Writing gamelan code 3
1.2.2 Figures . 5
1.2.3 Graphs . 6
1.2.4 LATEX embedded in gamelan figures 7

1.3 Miscellaneous LATEX commands 8
1.3.1 Function definitions 8
1.3.2 Default pen scale and color 8
1.3.3 Defining new colors 9
1.3.4 Color databases 10
1.3.5 Expanded macros in gamelan code 10
1.3.6 Grouping . 11
1.3.7 Turning gamelan on and off 11

2 Drawing figures 13
2.1 Numeric values and variables 13

2.1.1 Numeric type . 13
2.1.2 Equations and assignment 14
2.1.3 Fixed-point arithmetics 15
2.1.4 Units . 15
2.1.5 Floating-point numbers 15

2.2 Other types . 17
2.2.1 Pair type . 17
2.2.2 Path type . 18
2.2.3 Predefined paths 19
2.2.4 Pen type . 20
2.2.5 Color type . 21
2.2.6 Picture type . 22
2.2.7 Transform type 22
2.2.8 String type . 23
2.2.9 LATEX strings . 23

1

2.2.10 Boolean type . 24
2.3 Drawing commands and options 24
2.4 Shapes and boxes . 24
2.5 Control structures . 24

3 Visualizing data 25
3.1 Floating-point numbers 25
3.2 Files . 25
3.3 Functions . 25
3.4 Datasets . 25
3.5 Drawing commands for datasets 25
3.6 Scanning datasets . 25

4 Graph appearance 26
4.1 Scale . 26
4.2 Labels . 26
4.3 Legend . 26
4.4 Axes . 26
4.5 Frame . 26

2

Chapter 1

The LATEX interface

1.1 Using gamelan

gamelan consists of two parts: A LATEX style file and a MetaPost macro
package. The style file implements two environments at top level:
gmlpreamble and gmlfile. The former is part of the LATEX preamble; it
is used to pass certain macro declarations down to gamelan. The gmlfile
environment is part of the main document. It encloses the actual graphs
to be drawn by gamelan.

Inside a gmlfile environment, four additional environments are de-
fined: gmlcode, gmlfigure, gmlgraph, and gmltex. The text enclosed
by these is not parsed by the LATEX interpreter, but written verbatim to
a file. This file serves as an input file to gamelan, which transforms it
into eps (encapsulated postscript) figures. The figures are automatically
inserted into the original document in an additional LATEX run.

The document structure is depicted schematically in Fig.??. There
is at most one gmlpreamble, but there may be several gmlfile environ-
ments, each one producing a separate input file for gamelan. Inside a
gmlfile, the number of graphs and figures is unlimited.

To load the style file, put a corresponding \usepackage declaration
in the document header:

\usepackage{gamelan}

Since gamelan uses the standard verbatim and graphics packages, those
two need not be called separately if you need them; they are already
present.

1.2 The gmlfile environment

The gmlfile environment activates gamelan’s functionality by defininggmlfile

3

the figure-drawing environments, and by specifying where gamelan com-
mands should be written to. It has an optional argument which specifies
a filename:

\begin{gmlfile} or
\begin{gmlfile}[〈filename〉]

If the optional argument is omitted, the 〈filename〉 is set to the filename
of the main document, given by \jobname. Any code inside the graph-
drawing environments will be written to the file with the specified name
and extension .mp.

The gmlfile environment should be placed inside the document’s
\begin{document} . . . \end{document} body. Apart from gamelan fig-
ures and graphs, there can be arbitrary text, figures, sections, chapters,
etc., inside it. In a short document where only a single gmlfile environ-
ment is used, the \begin{gmlfile} command may immediately follow
\begin{document}. However, in a long document it is more convenient
to use several gmlfiles with different names and to restrict their scope
to a particular section or figure.

1.2.1 Writing gamelan code

gamelan interprets code written in MetaPost language. This language is
not intellegible to LATEX. However, the environments described in this
section provide an interface such that MetaPost code can inserted in a
LATEX document. On the other hand, gamelan will envoke LATEX to format
textual labels.

The simplest environment is gmlcode:gmlcode

\begin{gmlcode}

〈gamelan declarations and commands〉
\end{gmlcode}

This environment does not produce any graphical output; it encloses
global declarations and similar things . For instance, you may wish to
define global variables and macros:

\begin{gmlcode}

scale:= 1000;

vardef foo(expr x) = x + 42 enddef;

\end{gmlcode}

or a dataset is read in, to be used in several distinct graphs:

\begin{gmlcode}

directory "data/";

4

fromfile "run1.dat":

table plot(run1)();

endfrom

\end{gmlcode}

The gmlcode environment is also a way to try out some of the examples
in this manual which do not involve graphical output:

\begin{gmlcode}

a=4; show 3a;

\end{gmlcode}

The gmlcode environment must reside inside a gmlfile, so the latter
example reads:

\documentclass{article}

\usepackage{gamelan}

\begin{document}

\begin{gmlfile}

\begin{gmlcode}

a=4; show 3a;

\end{gmlcode}

\end{gmlfile}

\end{document}

If you type this code in your favorite editor, save it into a file named,
e.g., foo.tex, and start LATEX

> latex foo

a file foo.mp is created containing, among other stuff, the line enclosed
between \begin{gmlcode} and \end{gmlcode}. Now write

> gml foo

and gamelan is started with the input file foo.mp, resulting in the output

The number 12 is the result of the show 3a; command. Clearly, neither
graphics nor text has been generated. We will come to real figures in a
minute.

5

1.2.2 Figures

The gmlfigure environment is a wrapper for gamelan code intended togmlfigure

generate graphical output:

\begin{gmlfigure}

〈gamelan code〉
\end{gmlfigure}

The gamelan code is written to file, to be executed by the interpreter,
and the result transformed into an encapsulated Postscript file. Here is
an example:

\documentclass{article}

\usepackage{gamelan}

\begin{document}

\begin{gmlfile}

\begin{gmlfigure}

draw pentagram scaled 2cm;

\end{gmlfigure}

\end{gmlfile}

\end{document}

This file (named, again, foo.tex) should be run through LATEX

> latex foo

LATEX will create a file foo.mp, and it will complain that the figure foo.1
has not been found. To generate this figure, run gamelan on foo.mp

> gml foo

with the screen output

Now, in a second LATEX run the figure foo.1 is included in the document:

> latex foo

and the result shows the desired pentagram

> xdvi foo

6

1.2.3 Graphs

Now that we are able to produce graphics, why is there a second environ-gmlgraph

ment for the same purpose? The reason is, that for the task of visualizing
data, you need to specify the dimensions of the graph in advance: game-
lan knows the size of 1cm on paper, but it has to be told how to translate
a temperature value of 35◦F.

Thus, the gmlgraph environment has the same syntax as the familiar
picture: The dimensions of the graph on paper are specified in round
brackets, in terms of \unitlength. By default, this is equal to 1pt; it
is usually a good idea to set it explicitly immediately before the graph
environment1

\documentclass{article}

\usepackage{gamelan}

\begin{document}

\begin{gmlfile}

\unitlength 1mm

\begin{gmlgraph}(60,30)

draw plot((#0,#1), (#1,#2), (#2,#6),

(#3,#1), (#4,#2), (#5,#1));

\end{gmlgraph}

\end{gmlfile}

\end{document}

If you run this example through LATEX and gamelan

> latex foo; gml foo; latex foo

and try to view the result

> xdvi foo

the PostScript interpreter inside xdvi will probably crash. Similarly,
you will not be able to view or print the EPS file foo.1 by itself. The
reason is missing font information: In order keep the size of the EPS files
small, MetaPost tells the PostScript interpreter to take its font infor-
mation from the main document, which does not yet exist in PostScript

format. This is easily remedied by transforming the main document into
PostScript

> dvips foo

and to display the result as usual

1Usually, one wraps additional figure and center environments, or the like,
around a graph. In that case, \unitlength may be reset and you need the explicit
declaration if you do not like to think in pt.

7

> ghostview foo

Now the graph, including axis labels, is visible, and can be printed.
This extra translation step has to be repeated anytime you want to

have a look at the graphics. However, with this behavior the .dvi file is
really device-independent and can be distributed, to be translated into
PostScript on anybody’s local machine. It is guaranteed that the fonts
inside gamelan graphs match the text fonts in the same document, and
are appropriate for the local printer if the local dvips driver has been
set up correctly. This is not the case for self-contained EPS files.

1.2.4 LATEX embedded in gamelan figures

For typesetting labels, gamelan calls LATEX in the background. This is
normally invisible to the user (except for some delay in processing the
input file). However, since this background process is distinct from the
LATEX run which typesets the main document, there must be some means
to communicate macros and style settings to the subprocess. This is
illustrated in the following example:

\documentclass{article}

\usepackage{gamelan}

\begin{gmlpreamble}

\usepackage{amsfonts}

\end{gmlpreamble}

\begin{document}

\begin{gmlfile}

\begin{gmltex}\large\end{gmltex}

\begin{gmlfigure}

draw (-10,0)--(150,0) witharrow;

draw (0,-10)--(0,50) witharrow;

label(<<\mathbb{C} (the complex plane)>>,

(80,40));

\end{gmlfigure}

\end{gmlfile}

\end{document}

This has to be processed by LATEX and gamelan, as usual. gamelan will
take care of the embedded LATEX sequence (the text enclosed between <<

and >>):

> latex foo; gml foo; latex foo; dvips foo

> ghostview foo

8

Here, gamelan has to access the letter C in the amsfonts package. Thisgmlpreamble

is achieved by wrapping the corresponding \usepackage command in
a gmlpreamble environment. The code enclosed in this environment is
written verbatim to an auxiliary file with extension .ltp (foo.ltp in this
case). This file is included at the end of the preamble both by the main
document and by any LATEX subprocess which is started by gamelan.

Several gmlpreamble environments may appear in the preamble of
the main document. Their contents are concatenated and the resulting
file is executed once \begin{document} is reached.

Finally, LATEX declarations that do not belong to the preamble maygmltex

be inserted in the current gmlfile via a gmltex environment. In the
previous example, a \large declaration is inserted in this way which
applies to all following labels.

1.3 Miscellaneous LATEX commands

Apart from the environments described in the previous section, there are
only a few additional LATEX commands defined by gamelan. They provide
an interface to certain gamelan declarations which are frequently encoun-
tered. Such declarations must be placed inside a gmlfile environment,
before the gmlfigure or gmlgraph where their effect is needed.

From now on, we do not show the document header in the examples.
It is understood that they are part of a LATEX document, wrapped in an
appropriate gmlfile environment.

1.3.1 Function definitions

The \gmlfunction macro has three arguments: the function name, a\gmlfunction

dummy variable, and a gamelan floating-point expression which provides
the function definition. The following example shows how to plot the
function f(x) = e−x/10 cos x between x = 0 and x = 10:

\gmlfunction{f}{x}{exp(neg x over #10) times cos(x)}

\begin{gmlgraph}(150,80)

fromfunction f(#0,#10): draw table plot(); endfrom

\end{gmlgraph}

1.3.2 Default pen scale and color

gamelan draws its lines and shapes with an imaginary circular pen of\gmlpenscale

9

diameter 0.5bp. This can be locally reset by appropriate declarations or
drawing options, but there is also a global declaration

\gmlpenscale{〈pen diameter〉}

which is in effect for all following gmlfigures and gmlgraphs inside the
current gmlfile. The pen diameter is usually a number (in bp, if not
specified otherwise), but it may be any MetaPost expression which eval-
uates to a number.

Similarly, the default drawing color may be specified by \gmlpencolor,\gmlpencolor

which has four possible forms:

\gmlpencolor{〈R-value〉,〈G-value〉,〈B-value〉}
\gmlpencolor{〈color expression〉}
\gmlpencolor{"rrr ggg bbb"}

\gmlpencolor{"RRGGBB"}

where the 〈R-value〉 etc. are numbers between 0 and 1 which make up a
RGB tripel. In the second form, 〈color expression〉 is a MetaPost color
expression, allowing for named colors like

\gmlpencolor{blue}

The string "rrr ggg bbb" consists of three-digit RGB values between 0
and 255, separated by single blanks. Finally, "RRGGBB" stands for a string
of six hexadecimal digits. Thus, the color chartreuse may be defined as
the current drawing color by one of these four equivalent commands:

\gmlpencolor{0.5, 1, 0}

\gmlpencolor{0.5red + green}

\gmlpencolor{"127 255 000}

\gmlpencolor{"7FFF00"}

1.3.3 Defining new colors

Internally, gamelan deals with colors by the usual RGB model: each
color is represented by a tripel of numbers between 0 and 1. The three
components represent the red, green, and blue saturation, respectively.
Black is represented by (0,0,0), white by (1,1,1). Eight basic colors
are predefined as variables:

black, white, red, green, blue, cyan, magenta, yellow

Additional named colors can be defined by the \gmlcolor declaration.\gmlcolor

The syntax is analogous to \gmlpencolor:

10

\gmlcolor{〈color name〉}{〈R-value〉,〈G-value〉,〈B-value〉}
\gmlcolor{〈color name〉}{〈color expression〉}
\gmlcolor{〈color name〉}{"rrr ggg bbb"}

\gmlcolor{〈color name〉}{"RRGGBB"}

After a color has been defined, it may be used as the default drawing
color

\gmlcolor{chartreuse}{0.5, 1, 0}

\gmlpencolor{chartreuse}

or, within a gmlgraph or gmlfigure, it can be used wherever a color is
appropriate:

\begin{gmlfigure}

fill fullcircle scaled 5mm withcolor chartreuse;

\end{gmlfigure}

1.3.4 Color databases

gamelan comes with two files containing predefined colors: gmlcolors.tex
and gmlextracolors.tex. They contain a collection of \gmlcolor com-
mands, based on the rgb.txt color list which is distributed as part of
the X Window system. The color definitions may be copied into the
document, or one may simply include them

\input gmlcolors

\input gmlextracolors

1.3.5 Expanded macros in gamelan code

The environments discussed so far have one particular feature: LATEX\gml

control sequences inside the gamelan code are not expanded when the
main document is formatted. Usually, this is as desired, since LATEX
code in embedded labels should not be interpreted before gamelan has
called its LATEX subjob. However, in some cases one would like to expand
LATEX control sequences before code is written to file. This is achieved
by using the \gml command. For example, let us introduce a string in
gamelan which contains the current date:

\gml{string date; date="Today’s date: \today";}

Now you can write

11

\begin{gmlcode}

message date;

\end{gmlcode}

to display today’s date online when the gamelan job is executed.

1.3.6 Grouping

In gamelan, all declarations are global by default. The graph-drawing
environments gmlfigure and gmlgraph allow to make enclosed declara-
tions local, if the corresponding tokens occur in their optional argument:

\begin{gmlfigure}[a,qqw]

〈gamelan code〉
\end{gmlfigure}

Here, any macros and variable names whose first token is either a or qqw
will be local to this enviroment.

Furthermore, there is a generic environmentgmlgroup

\begin{gmlgroup}

〈LATEX and gamelan code〉
\begin{gmlgroup}

which generates a surrounding group for all gamelan code generated by
enclosed gmlfigure, gmlgraph, and gmlcode environments and for all
LATEX text embedded in these graphs.

For an application, consider the \gmlpenscale and \gmlpencolor

commands described above: They are automatically local, so if you write

\begin{gmlgroup}

\gmlpencolor{red}

\begin{gmlfigure}

〈gamelan code〉
\end{gmlfigure}

\end{gmlgroup}

the current figure is drawn with a red pen. After the closing \end{gmlgroup},
the pen color is black again (or whatever had been its previous value).

1.3.7 Turning gamelan on and off

In a long document containing many figures, it is time-consuming to run\gmlon

\gmloff gamelan on the whole input file if only a few of its figures have been
changed. Therefore, there are two switches

12

\gmlon and \gmloff

which can be put anywhere inside a gmlfile environment. When
\gmloff is encountered, the gamelan interpreter is told to skip all follow-
ing gmlfigures and gmlgraphs. The environments gmlcode and gmltex

are unaffected. \gmlon turns the interpreter on again. The generated
EPS files, if present, will be included in any case.

13

Chapter 2

Drawing figures

2.1 Numeric values and variables

2.1.1 Numeric type

gamelan has a fixed-point number system inherited from METAFONT. In
this scheme, any number is represented as an integer multiple of 1/65536.
The range is limited between −16384 and +16384. If such numbers are
to represent physical distances on paper (measured in bp), this covers
ordinary paper sizes with a high accuracy. However, numerical values
can represent other quantities as well. There is no distinct integer type
since fixed-point numbers are representable exactly. In particular, in
places where other programming languages accept integer values only —
such as for loop counters and array subscripts — fractional values are
allowed in gamelan.

Variables may consist of more than one token:

numeric a, foo.bar, xx yy zz;

Tokens (suffixes) may be separated by a whitespace and/or a single dot.
To declare arrays, use empty square brackets:

numeric a[], b[][], c[]dd q[];

a3=1; b0[-1]; c[3.1]dd q0;

Numeric subscripts (which indicate array elements) may be arbitrarily
mixed with other suffixes. Subscripts may be negative or even fractional.
For a positive subscript the square brackets are optional. (The explicit
numeric declaration is unnecessary for numerical values, but is manda-
tory for other types.)

14

2.1.2 Equations and assignment

Variables of numeric type need not be declared explicitly. Nevertheless,
an explicit declaration is possible:

numeric a, b, x;

a=4b; x=3; b=2x;

show a,b,x;

>> 24

>> 6

>> 3

The usual = sign may be used to assign variables which do not have a
value yet. However, as this example demonstrates, the = operator implies
equality, not assignment. If necessary, MetaPost automatically solves a
system of linear equations among variables to determine their actual
values. Once this is possible, an additional equation defining the same
variable would be either redundant or inconsistent:

b=b+1; show b;

! Inconsistent equation (off by 1).

To assign a variable, i.e., to remove its previous value (if any), one has
to either redeclare the variable, or use the := operator:

a:=a+1; show a;

>> 25

The := assignment will remove any previous value while an = assignment
(i.e., equation) produces an error if a value is accidentally overwritten.
So, in most cases the use of either form is partly a matter of taste.
However, if one deals with point locations on paper, the implicit equation
solver is a powerful tool to describe a graph in a rather concise and
abstract way.

The equation-solving mechanism requires variables to allow for an
unknown state. Variables of any type are unknown before their value is
fully determined (and, if they have not been declared otherwise, they
are assumed unknown numeric). The same is true for array elements —
therefore, arrays never have a definite size or length.

This feature is useful in other places: For instance, the command
which determines the extension of a graph in data coordinates may be
given unknown arguments; the appropriate values will then be deter-
mined automatically:

graphrange (#0,#0), (#10,??);

There is one variable which is always unknown. This is the ?? macro??

(a.k.a. whatever) which has been used in the example above.

15

2.1.3 Fixed-point arithmetics

The basic arithmetic operations as well as some elementary transcenden-
tal functions are available (see Table ??):

show 3+4, 5.3*(2.1-3), 5/2, 6**3, sqrt 2, sind 45;

>> 7

>> -4.76997

>> 2.5

>> 216.00002

>> 1.41422

>> 0.7071

Clearly, the accuracy of calculations cannot be overwhelming, given the
fact that 1/65536 is the smallest unit. For the applications MetaPost
has originally been designed for, this is sufficient. Unfortunately, for the
purpose of data handling, it is not. Therefore, floating numbers have
been introduced in the gamelan package (see below).

2.1.4 Units

To describe distances on paper, a number of constants are predefined1.

bp pt in mm cm

So, knowing that a multiplication sign is optional if a number is imme-
diately followed by a variable, distances may be expressed in standard
notation:

show 2cm, 1.4mm, 1in;

>> 56.6929

>> 3.96848

>> 72

The default unit is 1bp, equal to 1/72 of an inch.

2.1.5 Floating-point numbers

The range and accuracy of fixed-point numbers is limited. However, at
least the first limitation may be circumvented by doing calculations with
logarithms instead. This is the approach introduced in John Hobby’s
graph.mp macro package which has been followed by gamelan.

1To be exact, they are just ordinary variables, but it is not a good idea to change
their values. Any named variable may serve as a distance unit.

16

Consequently, in gamelanfloating numbers do not make up a distinct
type, but they are emulated in this way on top of fixed-point numerics2.
In gamelan code, a floating-point number is indicated by a preceding
hashmark:

numeric a,b,c,d;

a = #3; b = #.0000005; c = #6.023e23;

showfloat a,b,c;

>> "3.00000026E+00"

>> "5.00000047E-07"

>> "6.02300063E+23"

The output representation of a floating-point number is a string. Theyshowfloat

are also input as strings (otherwise, MetaPost would not be able to parse
scientific notation such as #6.023e23). Fortunately, you do not have to
type quotation marks here: A preprocessor will insert them for you. The
sign is mandatory, however.

The operator which transforms a fixed-point number into a floating-\#

point one is the same # sign:

numeric a,b; a = 3; b = #a;

show a; showfloat b;

>> 3

>> "3.00000026E+00")

The reverse transformation into a number or a string is done by #$ resp.\$

\$#$ $#$. These two are seldom needed. $#$ is the operation applied by
showfloat. Note that #$ may overflow, because there are floating-point
numbers which are not representable in the fixed-point system.

Floating-point numbers are distinguishable from fixed-point ones by
context only. Therefore, overloading or arithmetic operators is not pos-
sible, and a completely distinct system of arithmetic operations had to
be defined for them. The interpreter can’t help if the two systems are
unintentionally mixed. However, this is not critical as long as three rules
are obeyed:

1. Every floating-point constant appearing in gamelan code must be
preceded by a # sign.

2. For integer/fixed-point numbers and variables use the ordinary op-
erators +, -, *, /, etc. For floating-point numbers write full operator
names instead: plus, minus, times, over etc.

2A better solution would be to introduce floating-point numerics in the C sources
of MetaPost itself. This, however, has not (yet?) been done.

17

3. For debugging, use show to display fixed-point numbers, and
showfloat for floating-point numbers.

The necessity of writing long operator names makes calculational code
less readable. However, gamelan should not be used for complicated
calculations anyway3. The complete list of operators is found in Tab.??.

Needless to say, automatically solving linear equations is not imple-
mented for floating-point numbers. If you try it, the result will be just
garbage.

2.2 Other types

2.2.1 Pair type

Two numeric values may be grouped into a pair:

pair a; a=(3,2*5);

Variables of type pair must be declared before an assignment can be
made. Pair arrays can be defined as for numerics (or any other type):

pair b[]x[]; b3x[-.22] = 33;

Locations on paper are described by fixed-point pair values:

draw (0,0)--(10cm,5cm);

To access the components of a pair value, say p, use the xpart and ypart

operators:

pair p; p=(3,2);

show xpart p, ypart p;

>> 3

>> 2

Pair values can mathematically be treated as vectors. There is scalar
multiplication and division (with the * optional in unambiguous cases),
addition and subtraction, and a dot product:

show 3(2,1), (4,6)/2, (2,1)+(1,-1), (2,1) dotprod (1,-1);

>> (6,3)

>> (2,3)

>> (3,0)

>> 1

3Because they are inefficient and imprecise. Nevertheless, anything is possible in
principle.

18

The square bracket notation describes a location like one-third on the
straight line from (2,1) to (1,0) :

show 1/3[(2,1), (1,0)];

>> (1.66667,0.66667)

Square brackets are also used for selecting array elements. However,
since the dimensions in a multi-dimensional array are not separated by
commas (instead of a[3,2], you must write a[3][2] or a3 2), there is
no ambiguity here.

The arithmetic operations described above are defined for fixed-point
pairs only. Floating-point pairs are useful, nevertheless; they represent
data values:

draw plot((#0,#0), (#10,#5));

For floating-point pairs vector operations are not implemented: calcula-
tions must be done on the x and y components separately.

2.2.2 Path type

An ordered set of points (i.e., pair values) defines a path. In order for
gamelan to know whether line segment are straight, joined smoothly, or
otherwise, a connection method has to be specified. For instance, one
can define a path consisting of straight line segments

path p; p = (0,0)--(10,5)--(4,6);

or Bézier curves (cubic splines)

path p; p = (0,0)..(10,5)..(4,6);

The connection is defined by the two-character tokens -- and .., respec-
tively. These connectors can be mixed:

path p; p = (0,0)..(10,5)--(4,6);

Furthermore, we should mention how to declare cyclic paths

path q; q = (0,0)--(10,5)--(4,6)--cycle;

and how to extract the path length and to select a point within a path

show length p, point 1 of p, point 1.5 of p;

>> 2

>> (10,5)

>> (7,5.50002)

19

Point indices count beginning from zero, and they need not be integer.
For cyclic paths, they are cyclic, so negative values count from the end:

show length q, point -1 of q;

>> 3

>> (4,6)

A subpath is selected as follows:

tracingonline:=1; show subpath (0, 1.5) of p;

>> Path at line 0:

(0,0)..controls (3.33333,1.66667) and (6.66667,3.33333)

..(10,5)..controls (9,5.16667) and (8,5.33334)

..(7,5.50002)

Setting tracingonline:=1 allows paths to be displayed on screen (oth-
erwise, the show command would write them to the logfile only). Here,
the points are listed together with (invisible) Bézier control points which
internally define the path shape. There are many ways to access these
explicitly, and to get finer control on the path shape; see the MetaPost
and METAFONT manuals.

2.2.3 Predefined paths

The collection of predefined paths is helpful for designing figures and
symbols. There are general macros for polygons, star-shaped paths, and
crosses:

polygon 〈n〉, polygram 〈n〉, and polycross 〈n〉

where 〈n〉 is an integer which specifies the number of edges. A couple of
special cases are named

triagon (= triangle), tetragon (= diamond), pentagon,
hexagon

triagram, tetragram, pentagram, hexagram
triacross, tetracross (= cross), pentacross, hexacross

Here, triagon is equivalent to polygon 3, tetragon means polygon 4,
and so on. Finally, there are the obvious ones

circle and square

where a circle consists of eight points connected by Bézier curves. These
paths are shown in Table ??. Transformations (e.g., scaled, xscaled,
yscaled, rotated) and path operations turn them into more general
path shapes4.

4For generic oval shapes, consider the superellipse command described in the
MetaPost and METAFONT manuals.

20

2.2.4 Pen type

By default, a virtual circular pen of diameter 0.5bp is used for drawingpenscale

lines. This can be changed by a declaration

penscale 〈pen-diameter〉;

to any value. This declaration is local to the current figure. To affectwithpenscale

the the current line only, append an option to the corresponding drawing
command:

draw 〈object〉 withpenscale 〈pen-diameter〉;

However, one can change not only the width, but also the shape of thewithpen

virtual pen. See this example:

path p; p=(0,0){right}..(2cm,0.5cm)..(0,1cm)..{right}(2cm,1.5cm);

penscale 5mm;

draw p;

draw p shifted (3cm,0) withpen penrazor scaled 5mm;

draw p shifted (6cm,0) withpen penrazor rotated 45 scaled 5mm;

draw p shifted (9cm,0) withlinecap butt;

The same path is drawn in four different ways: First, using a thick, but
otherwise ordinary, pen. For the next two images we have used a flat pen
in two different orientations. (Note that the global penscale declaration
applies only to the default pen.)

A global change of pen shape and size is achieved by a pickup com-pickup

mand, which is in effect for the rest of the current figure. The following
two commands are equivalent:

penscale 5mm;

pickup pencircle scale 5mm;

In the last image the virtual pen is circular again, but the line endswithlinecap

are cut off by a withlinecap option. To enforce this globally, set the
linecap parameter explicitly: linecap:=butt; Alternatives are butt,
rounded (default), and squared.

In fact, a pen is a type of variable which can be generated from any
closed path. Let us draw the path again, now using a triangular pen:

pen tripen; tripen=makepen(triagon);

draw p withpen tripen scaled 5mm;

21

Finally, the appeareance of sharp edges is controlled by the linejoinwithlinejoin

parameter (globally) or the withlinejoin option (locally):

path p; p=(0,0)--(2cm,0.5cm)--(0,1cm);

penscale 5mm;

draw p withlinejoin mitered;

draw p shifted (4cm,0) withlinejoin rounded;

draw p shifted (8cm,0) withlinejoin beveled;

2.2.5 Color type

Colors are defined as RGB tripels. Internally, they are treated com-
pletely analogous to pair values, and they can be understood as points
in a three-dimensional space. Operations that work on pair values also
apply to colors, including addition, scalar multiplication, and even linear
interpolation:

show red, .5red, red+blue, .5[red,white];

>> (1,0,0)

>> (0.5,0,0)

>> (1,0,1)

>> (1,0.5,0.5)

When rendering colors, negative components are mapped to 0, and com-
ponent values greater than 1 are mapped back to 1.

Color variables are easily defined:

color c; c=(.5,.1,.9);

The three components of a color value or variable, say p, are accessed bywithcolor

redpart p, greenpart p, and bluepart p

The withcolor drawing option allows for any color expression as
argument. Here, we take a predefined color:

fill square scaled 5mm withcolor red;

draw square scaled 8mm withpenscale 2 withcolor blue;

The predefined colors, as well as the LATEX interface to gamelan colors,
have been introduced above in Sec. 1.3.

22

2.2.6 Picture type

Multiple graph elements can be collected into pictures, which by them-image

selves can be stored in variables. The image macro is a wrapper for
defining pictures:

path p; p = square scaled 1cm;

picture q; q = image(draw p; draw p rotated 45);

The result may be integrated into the final figure (which, incidentally,
is a picture variable by itself, called currentpicture) by another draw

command:

draw q;

Operations that can be done with pictures include assignment and junc-nullpicture

tion. The last line in the previous example is equivalent toaddto

picture q; q = nullpicture;

addto q also p; addto q also p rotated 45;

Transformations such as rotated will be discussed below.

2.2.7 Transform type

gamelan is well prepared to apply affine transformations to any graphi-
cal object: pairs, paths, and pictures. These include shifts, reflections,
rotations, rescalings, and more. They may be concatenated:

draw circle scaled 3mm;

draw circle scaled 5mm shifted (2cm,0);

draw square rotated 45;

picture p;

p=triangle scaled 5mm reflectedabout ((-1,0)--(1,0));

As a rule, in a drawing command transforms come before any drawing
options (such as withcolor, etc.) since they modify the object before it
is being drawn. If they are concatenated, they are applied from left to
right.

Transforms may be stored in variables:

transform t; t=identity rotated 45 xscaled 2 yscaled 4;

draw q transformed t;

Here, the trivial transform identity serves as a starting point for defin-
ing the transform variable. Of course, another transform may act on t

afterwards, and one could apply additional transformations in the draw-
ing command.

23

2.2.8 String type

Strings are not very important in gamelan. Nevertheless, they are avail-
able, and some operations can be done with them:

string s,t,u; s = "foo"; t = "bar"

u := s&t;

show u, length u, substring(1,4) of u;

>> "foobar"

>> 6

>> "oob"

As for paths, indices count beginning with zero. Think of the characters
as corresponding to line segments, so substring indices correspond to the
points in between.

Strings may be used to display messages:

message "Hello, world!"

More important, however, is their use as graph labels

label("foobar", (5cm,2cm));

They are typeset in a particular font defaultfont (a string variable),
which is set to "cmr10", "cmr11", or "cmr12", depending on the default
font of the enclosing LATEX document.

2.2.9 LATEX strings

The form of labels that can be directly represented as strings is very<<

>> limited, even if the character set is extended by additional symbols (such
as greek letters, square root sign, etc.) Fortunately, gamelan has the full
power of LATEX at hand: Any text which is enclosed by << and >> signs
is processed by LATEX and transformed into a picture expression, before
gamelan comes to see it. So, LATEX labels can be assigned to a picture
variable, or directly be integrated into the figure. See this example:

picture p; p = <<$E = mc^2$>>;

for x=0 step 1/12 until 1:

draw p colored ((1-x)*white) shifted ((4x, x**2)*5mm);

endfor

The LATEX code is translated by a subprocess of gamelan, which acts as a
preprocessor on the input file. To pass declarations, packages, and defini-
tions to this subprocess, use the gmltex and gmlpreamble environments
described in the previous chapter. Alternatively, LATEX code which does<<!

not produce output may be inserted into the gamelan text, wrapped into
the brackets <<! and >>.

24

2.2.10 Boolean type

There are two boolean values

false and true

and a distinct variable type boolean with the usual operators:

boolean a,b; a=true; b=false;

show a or b, not a and b;

>> true

>> false

The main use of these are control structures (see below).

2.3 Drawing commands and options

2.4 Shapes and boxes

2.5 Control structures

25

Chapter 3

Visualizing data

3.1 Floating-point numbers

3.2 Files

3.3 Functions

3.4 Datasets

3.5 Drawing commands for datasets

3.6 Scanning datasets

26

Chapter 4

Graph appearance

4.1 Scale

4.2 Labels

4.3 Legend

4.4 Axes

4.5 Frame

27

