
arXiv:0708.4233 (also based on LC-TOOL-2001-039 (revised))

WHIZARD 2.0

A generic

Monte-Carlo integration and event generation package

for multi-particle processes

MANUAL 1

Wolfgang Kilian,2 Thorsten Ohl,3 Jürgen Reuter4

Deutsches Elektronen-Synchrotron DESY, D–22603 Hamburg, Germany

1This work is supported by Helmholtz-Alliance “Physics at the Terascale”. In former stages this
work has also been supported by the Helmholtz-Gemeinschaft VH–NG–005

2e-mail: kilian@hep.physik.uni-siegen.de
3e-mail: ohl@physik.uni-wuerzburg.de
4e-mail: reuter@physik.uni-freiburg.de

2

ABSTRACT

WHIZARD is a program system designed for the efficient calculation of multi-
particle scattering cross sections and simulated event samples. The events
can be written to file in various formats (including HepMC, LHEF, STD-
HEP, and ASCII) or analyzed directly on the parton level using a built-in
LATEX-compatible graphics package.

Tree-level matrix elements are generated automatically for arbitrary partonic
processes by calling the built-in matrix-element generator O’Mega. Various
models beyond the SM are implemented, in particular, the MSSM is sup-
ported with an interface to the SUSY Les Houches Accord input format.
Matrix elements obtained by alternative methods (e.g., including loop correc-
tions) may be interfaced as well. Using an adaptive multi-channel method for
phase space integration, the program is able to calculate numerically stable
signal and background cross sections and generate unweighted event samples
with reasonable efficiency for processes with up to eight and more final-state
particles. Polarization is treated exactly for both the initial and final states.
Quark or lepton flavors can be summed over automatically where needed.

For hadron collider physics, an interface to the LHAPDF library is provided.
Also, the standard PDF library (PDFLIB) can be linked. Is this still be
true?

For Linear Collider physics, beamstrahlung (CIRCE), Compton and ISR spec-
tra are included for electrons and photons. Alternatively, beam-crossing
events can be read directly from file.

For showering, fragmenting and hadronizing the final state, a PYTHIA and
HERWIGinterface are provided which follow the Les Houches Accord. WHIZARD
does come with its own shower.

The WHIZARD distribution is available at

http://whizard.event-generator.org or via
http://projects.hepforge.org/whizard

Contents

1 Introduction 5

2 Installation 7
2.1 Prerequisites and Installation . 7

2.1.1 WHIZARD self tests/checks . 8
2.2 Setting up a user work space . 9

3 How to use WHIZARD 11
3.1 Getting Started . 11

3.1.1 Hello World . 11
3.1.2 A Simple Calculation . 12

3.2 SINDARIN – The WHIZARD command language 14
3.2.1 Syntactic details of SINDARIN . 14

3.3 WHISH – The WHIZARD Shell/Interactive mode 24
3.4 Using processes from several different models . 25

4 Examples 27

5 Implemented physics 29
5.1 The Monte-Carlo integration routine: VAMP . 29
5.2 The Phase-Space Setup . 29
5.3 The hard interaction models . 29

5.3.1 The Standard Model and friends . 29
5.3.2 Beyond the Standard Model . 29

3

4 CONTENTS

Chapter 1

Introduction

WHIZARD is a modern Monte-Carlo

5

6 CHAPTER 1. INTRODUCTION

Chapter 2

Installation

2.1 Prerequisites and Installation

The concept of the WHIZARD installation has been changed from version 1 to version 2. Now
WHIZARD is centrally installed on a computer, e.g. in the /usr/local, and then the user
has a working space which is completely separated from the WHIZARD installation directory.
The WHIZARD tarball can be downloaded either from the WHIZARD webpage, http://whizard.
event-generator.org, or the corresponding HepForge webpage, http://projects.hepforge.
org/whizard. On the WHIZARD webpage, one can either download the tarball of the most re-
cent version (or older versions), or one can check out the latest version from the subversion
(svn) repository. The latter is only recommended for developers and users willing to accept
that maybe not all newly installed features are already working. The check-out from the svn
repository is done with the following command:

svn checkout http://svn.hepforge.org/whizard/trunk/ SomeLocalDir

Note again, that the subversion contains the latest developer version. In order to be able,
to compile this, one has to first generate the configure script out of the file configure.ac

by running autoreconf (NOT autoconf) which is part of the autoconf/automake (http://
www.gnu.org/software/autoconf/ and http://www.gnu.org/software/automake) package.
Furthermore, the development version also needs the noweb tools to be installed on the system
in order to extract the source codes and documentation from several so called .nw files. The
noweb package can be downloaded and installed from http://www.cs.tufts.edu/~nr/noweb/.

The general prerequisites for the installation (i.e. also from the tarball, not only from the
svn) are standard tools for software development like make etc., and two different compilers, a
FORTRAN2003 for the WHIZARD core and its corresponding libraries as well as an O’Caml compiler
for the O’Mega matrix element generator.

Unpack the tarball, go to the WHIZARD directory, create a new directory and go to it. In
that directory, perform a ../configureFC=<yourFORTRANcompiler>--prefix=/usr/local.
Note that this is because the source and compile directories should be different to avoid any
problems during compilation and installation. ../configure--help shows you the options
for the configure process you have. The FC environment variable allows you to specify your

7

http://whizard.event-generator.org
http://whizard.event-generator.org
http://projects.hepforge.org/whizard
http://projects.hepforge.org/whizard
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake
http://www.cs.tufts.edu/~nr/noweb/
../configure FC=<your FORTRAN compiler> --prefix=/usr/local
../configure --help

8 CHAPTER 2. INSTALLATION

FORTRAN compiler of choice. Note that WHIZARD 2 has been written in FORTRAN2003 in a
fully object-oriented way. We highly recommend usage of the standard gfortran compiler
from version 4.5.0 on. You can access the help menu of configure by ../configure --help.
./configure -V shows you the actual version of your downloaded WHIZARD distribution. The
possible environment variables are:

CC C compiler command

CFLAGS C compiler flags

LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a

nonstandard directory <lib dir>

LIBS libraries to pass to the linker, e.g. -l<library>

CPPFLAGS C/C++/Objective C preprocessor flags, e.g. -I<include dir> if

you have headers in a nonstandard directory <include dir>

CPP C preprocessor

FC Fortran compiler command

FCFLAGS Fortran compiler flags

CXX C++ compiler command

CXXFLAGS C++ compiler flags

CXXCPP C++ preprocessor

For most of these there is no need to be set during installation.
The configure process checks for the build and host system type; only if this is not detected

automatically, the user would have to specify this by himself. After that system-dependent files
are searched for, LaTeX and Acroread for documentation and plots, the FORTRAN compiler is
checked, and finally the O’Caml compiler. The next step is the checks for external programs
like LHAPDF and HepMC. Finally, all the Makefiles are being built.

The compilation is done by invoking make and finally make install. You could also do a
make check in order to test whether the compilation has produced sane files on your system.
This is highly recommended.

Be aware that there be problems for the installation if the install path or a user’s home
directory is part of an AFS file system. Several times problems were encountered connected
with conflicts with permissions inside the OS permission environment variables and the AFS
permission flags which triggered errors during the make install procedure.

It is possible to compile WHIZARD without the O’Caml parts of O’Mega, namely by using
the --disable-omega option of the configure. This will result in a built of WHIZARD with
the O’Mega Fortran library, but without the binaries for the matrix element generation. All
selftests (cf. 2.1.1) requiring O’Mega matrix elements are thereby switched off. Note that you
can install such a built (e.g. on a batch system without O’Caml installation), but the try to
build a distribution (all make distxxx targets) will fail.

2.1.1 WHIZARD self tests/checks

WHIZARD has a number of self-consistency checks and test which assure that most of its
features are running in the intended way. The standard procedure to invoke these self tests

2.2. SETTING UP A USER WORK SPACE 9

is to perform a make check from the build directory. If src and build directories are the
same, all relevant files for these self-tests reside in the test subdirectory of the main WHIZARD
directory. In that case, one could in principle just call the scripts individually from the command
line. Note, that if src and build directory are different as recommended, then the input files
will have been installed in prefix/share/whizard/test, while the corresponding test shell
scripts remain in the srcdir/test directory. As the main shell script run_whizard_sh has
been built in the build directory, one now has to copy the files over by and set the correct
paths by hand, if one wishes to run the test scripts individually. make check still correctly
performs all WHIZARD self-consistency tests.

There are additional, quite extensiv numerical tests for validation and backwards compatibil-
ity checks for SM and MSSM processes. As a standard, these extended self tests are not invoked.
However, they can be enabled by setting the configure option --enable-extnum-checks. On
the other hand, the standard self-consistency checks can be completely disabled with the option
--disable-default-checks.

2.2 Setting up a user work space

When WHIZARD is installed on a system it can be used by any user in a multi-user environment.

prefix/share/whizard/test
run_whizard_sh
--enable-extnum-checks
--disable-default-checks

10 CHAPTER 2. INSTALLATION

Chapter 3

How to use WHIZARD

3.1 Getting Started

WHIZARD can run as a stand-alone program. You (the user) can steer WHIZARD either
interactively or by a script file. We will first describe the latter method, since it will be the
most common way to interact with the WHIZARD system.

3.1.1 Hello World

The script is written in SINDARIN. This is a DSL – a domain-specific scripting language that
is designed for the single purpose of steering WHIZARD.

Previous versions of the program, similar to most high-energy physics programs, relied on a
bunch of input files that the user had to provide in some obfuscated format. This approach is
sufficient for straightforward applications. However, once you get experienced with a program,
you start thinking about uses that the program’s authors did not foresee. In case of a Monte
Carlo package, typical abuses are parameter scans, complex patterns of cuts and reweighting
factors, or data analysis without recourse to external packages. This requires more flexibility.

Instead of transferring control over data input to some generic scripting language like PERL
or PYTHON (or even C++), which come with their own peculiarities and learning curves, we
decided to unify data input and scripting in a dedicated steering language that is particularly
adapted to the needs of Monte-Carlo integration, simulation, and simple analysis of the re-
sults. Thus we discovered what everybody knew anyway: that W(h)izards communicate in
SINDARIN, Scripting INtegration, Data Analysis, Results display and INterfaces.

Now since SINDARIN is a programming language, we honor the old tradition of starting
with the famous Hello World program. In SINDARIN this reads

echo ("Hello World!")

Open your favorite editor, type this text, and save it into a file named hello.sin.
Now we assume that you – or your kind system administrator – has installed WHIZARD

in your executable path. Then you should open a command shell and execute

11

12 CHAPTER 3. HOW TO USE WHIZARD

> whizard -r hello.sin

and if everything works well, you get the output

| Writing log to ’whizard.log’

|===|

| WHIZARD 2.0.0_rc1

|===|

| Initializing process library ’processes’

| Reading model file ’SM.mdl’

| Using model: SM

| Reading commands from file ’hello.sin’

Hello World!

| WHIZARD run finished.

|===|

3.1.2 A Simple Calculation

You may object that WHIZARD is not exactly designed for printing out plain text. So let us
demonstrate a more useful example.

Looking at the Hello World output, we first observe that the program writes a log file named
(by default) whizard.log. This file receives all screen output, except for the output of external
programs that are called by WHIZARD. You don’t have to cache WHIZARD’s screen output
yourself.

After the welcome banner, WHIZARD tells you that it initializes a process library, and
it reads a physics model. The process library is initially empty. It is ready for receiving
definitions of elementary high-energy physics processes (scattering or decay) that you provide.
The processes are set in the context of a definite model of high-energy physics. By default this
is the Standard Model, dubbed SM.

Here is the SINDARIN code for defining a SM physics process, computing its cross section,
and generating a simulated event sample:

process ee = e1, E1 -> e2, E2

compile

sqrts = 360 GeV

integrate (ee)

n_events = 10

?write_lhef = true

$file_lhef = "ee.lhef"

simulate (ee)

As before, you save this text in a file (named, e.g., ee.sin) which is run by

3.1. GETTING STARTED 13

> whizard -r ee.sin

(We will come to the meaning of the -r option later.) This produces a lot of output. We break
it down into pieces.

The startup is as before:

| Writing log to ’whizard.log’

|===|

| WHIZARD 2.0.0_rc1

|===|

| Initializing process library ’processes’

| Reading model file ’SM.mdl’

| Using model: SM

| Reading commands from file ’ee.sin’

| Added process to library ’processes’:

| [O] ee = e-, e+ -> mu-, mu+

| Generating code for process library ’processes’

| Calling O’Mega for process ’ee’

| command: /home/kilian/whizard/build/nagfor/src/omega/bin/omega_SM.opt -o ee.f90 -target:whizard -target:parameter_module parameters_SM -target:module ee -target:md5sum 6ABA33BC2927925D0F073B1C1170780A -fusion:progress -scatter ’e- e+ -> mu- mu+’

[1/1] e- e+ -> mu- mu+ ... done. [time: 0.03 secs, total: 0.03 secs, remaining: 0.00 secs]

all processes done. [total time: 0.03 secs]

SUMMARY: 6 fusions, 2 propagators, 2 diagrams

| Writing interface code for process library ’processes’

| Compiling process library ’processes’

| Loading process library ’processes’

| Process ’ee’: updating previous configuration

sqrts = 3.6000000000000000E+02

| Integrating process ’ee’

| Generating phase space, writing file ’ee.phs’ (this may take a while)

| Found 2 phase space channels.

Warning: No cuts have been defined.

| Using partonic energy as event scale.

| iterations = 3:1000, 3:10000

| Creating grids

| 1000 calls, 2 channels, 2 dimensions, 20 bins, stratified = T

|===|

| It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] |

|===|

1 1000 8.3366006E+02 1.47E+00 0.18 0.06* 40.12

2 1000 8.3357740E+02 8.16E-01 0.10 0.03* 40.11

3 1000 8.3214263E+02 1.01E+00 0.12 0.04 57.40

14 CHAPTER 3. HOW TO USE WHIZARD

|---|

3 3000 8.3311382E+02 5.83E-01 0.07 0.04 57.40 0.69 3

|---|

4 10000 8.3325834E+02 1.10E-01 0.01 0.01* 57.02

5 10000 8.3333796E+02 1.11E-01 0.01 0.01 57.03

6 10000 8.3323772E+02 1.11E-01 0.01 0.01 57.03

|===|

6 30000 8.3327798E+02 6.41E-02 0.01 0.01 57.03 0.23 3

|===|

n_events = 10

?write_lhef -> true

$file_lhef -> "ee.lhef"

| No analysis setup has been provided.

| Writing events in LHEF format to file ’ee.lhef’

| Generating 10 events ...

| Writing events in internal format to file ’whizard.evx’

| ... done

| There were no errors and 1 warning(s).

| WHIZARD run finished.

|===|

3.2 SINDARIN – The WHIZARD command language

3.2.1 Syntactic details of SINDARIN

In the SINDARIN language, there are certain pre-defined constructors or commands that cannot
be used in different context by the user, which are – in alphabetical order – $action, alias, all,
$analysis filename, and, as, any, beams, cmplx, combine, compile, cuts, $description,
echo, else, exec, expect, false, $file debug, $file default, file hepmc, $file lhef, if,
include, int, integrate, iterations, $label, lhapdf, library, load, luminosity, model,
n events, no, observable, or, $physical unit, plot, process, read slha, real, ?rebuild,
?recompile, record, $restrictions, results, scan, seed, show, simulate, sqrts, then,
$title, tolerance, true, unstable, write analysis, ?write debug, ?write default, $write hepmc,
?write lhef, write slha, $xlabel, and $ylabel. Also units are fixed, like degree, eV, keV,
q MeV, GeV, and TeV. Again, these tags are locked and not user-redefinable. There functionality
will be listed in detail below. Furthermore, a variable with a preceding question mark, ?, is a
logical, while a preceding hash, #, denotes a character string variable. Also, a lot of unary and
binary operators exist, + - \ , = : -> < > <= >= ^ () [] {} ~~~, as well as quotation
marks, ”. Note that the different parentheses and brackets fulfill different purposes, which will
be explained below. Comments in a line can be marked by a hash, #, or an exclamation mark,
!.

~
~~

3.2. SINDARIN – THE WHIZARD COMMAND LANGUAGE 15

• $action

I have no real clue yet. In the example input file it is used to set an histogram manually
by the individual record entries. But why is it a logical variable??? WK?

• alias

This allows to define a collective expression for a class of particles, e.g. to define a generic
expression for leptons, neutrinos or a jet as alias lepton = e1:e2:e3:E1:E2:E3, alias
neutrino = n1:n2:n3:N1:N2:N3, and alias jet = u:d:s:c:U:D:S:C:g, respectively.

• all

all is a function that works on a logical expression and a list, all <log expr> [<list>],
and returns true if and only if log expr is fulfilled for all entries in list, and false oth-
erwise. Examples: all Pt > 100 GeV [lepton] checks whether all leptons are harder
than 100 GeV, all Dist > 2 [u:U, d:D] checks whether all pairs of corresponding
quarks are separated in R space by more than 2. Logical expressions with all can
be logically combined with and and or. (cf. also any, and, no, and or)

• $analysis filename

This character variable allows to create a LATEXfile for the user anaylsis, and to specify
its name. If this variable is not set, the analysis will be directed to the screen output.
(cf. also write analysis)

• and

This is the standard two-place logical connective that has the value true if both of its
operands are true, otherwise a value of false. It is applied to logical values, e.g. cut
expressions. (cf. also or).

• as

cf. compile

• any

any is a function that works on a logical expression and a list, any <log expr> [<list>],
and returns true if log expr is fulfilled for any entry in list, and false otherwise.
Examples: any PDG == 13 [lepton] checks whether any lepton is a muon, any E > 2 *

mW [jet] checks whether any jet has an energy of twice the W mass. Logical expressions
with any can be logically combined with and and or. (cf. also all, and, no, and or)

• beams

This specifies the contents and structure of the beams. If this command is absent in the
input file, WHIZARD automatically takes the two incoming partons (or one for decays)
of the corresponding process as beam particles and no structure functions are applied.
Protons and antiprotons as beam particles are predefined as p and pbar, respectively. A
structure function, like lhapdf, ISR, EPA and so on are switched on as e.g. beams = p,

p -> lhapdf. (cf. also circe, circe2, lhapdf).

16 CHAPTER 3. HOW TO USE WHIZARD

• cmplx

Defines a complex variable. (to be finalized still

• combine

The combine [<list1>, <list2>] operation makes a particle list whose entries are the
result of adding (the momenta of) each pair of particles in the two input lists list1, list2.
For example, combine [incoming lepton, lepton] constructs all mutual pairings of an
incoming lepton with an outgoing lepton (an alias for the leptons has to defined, of course).

• compile

The compile command is mandatory, it invokes the compilation of the process(es) (i.e. the
matrix element file(s)) to be compiled as a shared library. This shared object file has the
standard name processes.so and resides in the .libs subdirectory of the corresponding
user workspace. If the user has defined a different library name lib name with the library
command, then WHIZARD compiles this as the shared object .libs/lib name.so. (This
allows to split process classes and to avoid too large libraries.) Another possibility is to
use the command compile as "static name". This will compile and link the process
library in a static way and create the static executable static name in the user workspace.
(cf. also library, load)

• cuts

This command defines the cuts to be applied to certain processes. The syntax is: cuts =

<log class> <log expr> [<unary or binary particle (list) arg>], where the cut
expression must be initialized with a logical classifier log class like all, any, no. The
logical expression log expr contains the cut to be evaluated. Note that this need not only
be a kinematical cut expression like E > 10 GeV or 5 degree < Theta < 175 degree,
but can also be some sort of trigger expression or event selection, e.g. PDG == 15 would
select a tau lepton. Whether the expression is evaluated on particles or pairs of particles
depends on whether the discriminating variable is unary or binary, Dist being obviously
binary, Pt being unary. Note that some variables are both unary and binary, e.g. the
invariant mass M . Cut expressions can be connected by the logical connectives and and
or. The cuts statement acts on all subsequent process integrations and analyses until a
new cuts statement appears. (cf. also all, any, Dist, E, M, no, Pt).

• degree

Expression specifying the physical unit of degree for angular variables, e.g. the cut ex-
pression function Theta. (if no unit is specified for angular variables, radians are used).

• $description

String variable that allows to specify a description text for the analysis, $description
= "analysis description text". This line appears below the title of a corresponding
analysis, on top of the respective plot. (cf. analysis, $title)

• echo

Allows to put verbose information on the screen during execution, e.g. echo ("Hello,

world!"). (cf. also show)

3.2. SINDARIN – THE WHIZARD COMMAND LANGUAGE 17

• else

cf. if

• eV

Physical unit, stating that the corresponding number is in electron volt.

• exec

Constructor exec ("<cmd name>") that demands WHIZARD to execute/run the com-
mand cmd name. For this to work that specific command must be present either in the
path of the operating system or as a command in the user workspace.

• expect

The binary function expect compares two numerical expressions whether they are fulfill a
certain ordering condition or are equal up to a specific uncertainty or tolerance which can
bet set by the specifier tolerance, i.e. in principle it checks whether a logical expression
is true. The expect function does actually not just check a value for correctness, but also
records its result. If failures are present when the program terminates, the exit code is
nonzero. The syntax is expect (<num1> <log comp> <num2>), where num1 and num2 are
two numerical values (or corresponding variables) and log comp is one of the following
logical comparators: <, >, <=, >=, ==, /=, ~~, ~. (cf. also <, >, <=, >=, ==, /=, ~~, ~,
tolerance).

• false

Constructor stating that a logical expression or variable is false, e.g. ?<log var> =

false. (cf. also true).

• $file debug

String variable that allows via $file debug = "file name" to specify the name for the
file file name to which events in a a long verbose format with debugging information are
written. If not set, the default file name is whizard.debug. (cf. also ?write debug)

• $file default

String variable that allows via $file default = "file name" to specify the name for
the file file name to which events in a human-readable format are written. If not set,
the default file name is whizard.default. (cf. also ?write default)

• $file hepmc

String variable that allows via $file hepmc = "file name" to specify the name for the
file file name to which events in the HepMC format are written. If not set, the default
file name is whizard.hepmc. (cf. also ?write hepmc)

• $file lhef

String variable that allows via $file lhef = "file name" to specify the name for the
file file name to which events in the (new) Les Houches event (LHE) format (including
XML headers) are written. If not set, the default file name is whizard.lhef. (cf. also
?write lhef)

<
>
<=
>=
==
/=
~~
~
<
>
<=
>=
==
/=
~~
~

18 CHAPTER 3. HOW TO USE WHIZARD

• GeV

Physical unit, energies in 109 electron volt. This is the default energy unit of WHIZARD.

• if

Conditional clause with the construction if <log expr> then <expr> else <expr>.
Note that there is no specific end if statement. For more complicated expressions
it is better to use expressions in parentheses: if (<log expr>) then {<expr>} else

{<expr>}. Examples are a selection of up quarks over down quarks depending on a logi-
cal variable: if ?ok then u else d, or the setting of an integer variable depending on
the rapidity of some particle: if (eta > 0) then { a = +1} else { a = -1}. The
then constructor is not mandatory and can be omitted.

• include

The include statement, include ("file.sin") allows to include external SINDARIN
files file.sin into the main WHIZARD input file. A standard example is the inclusion
of the standard cut file default cuts.sin.

• int

This is a constructor to specify integer constants in the input file. Strictly speaking, it is a
unary function setting the value int val of the integer variable int var: int <int var>

= <int val>. (cf. also real and cmplx)

• integrate

The integrate (<proc name>) { <integrate options> } command invokes the inte-
gration (phase-space grid generation and Monte-Carlo sampling of the process proc name

(which can also be a list of processes) with the integration options <integrate options.
Right now the only option is to specify the number of iterations and calls per integration
during the Monte-Carlo phase-space integration via iterations = <n iterations>:<n calls>.
Note that this can be list, separated by colons, which breaks up the integration process
into units of the specified number of integrations and calls each.

• iterations

Option to set the number of iterations and calls per iteration during the Monte-Carlo
phase-space integration process, cf. integrate.

• keV

Physical unit, energies in 103 electron volt.

• $label

This is a string variable, $label = "label name" that allows to specify a label label name

for analysis plots on the x axis. It is only taken into account if the variable $xlabel has
not been set, in which case it is overwritten by the string value of that variable. (cf. also
xlabel, ylabel). WK: Do I see this correctly?

• lhapdf

NOT YET PROPERLY WORKING!!!! (cf. beams)

3.2. SINDARIN – THE WHIZARD COMMAND LANGUAGE 19

• library

The command library = "<lib name>" allows to specify a separate shared object li-
brary archive lib name.so, not using the standard library processes.so. Those libraries
(when using shared libraries) are located in the .libs subdirectory of the user workspace.
Specifying a separate library is useful for splitting up large lists of processes, or to restrict
a larger number of different loaded model files to one specific process library. (cf. also
compile, load)

• load

The load command allows to load again a library if some details have been changed
(processes added, redefined or maybe changed. Guess, here is some explanation missing
(cf. also compile, library)

• luminosity This specifier luminosity = <num> sets the integrated luminosity for the
event generation of the processes in the SINDARIN input files. Note that WHIZARD
itself chooses the number from the luminosity or from the n events specifier, whichever
would give the larger number of events. As this depends on the cross section under
consideration, it might be different for different processes in the process list. WK: Is
this correct? Do we really want this? What about different units? Furthermore, the
luminosity or n events command has to be invoked after the corresponding logical
variable which tells WHIZARD to write an event file in a specific format. (cf. n events,
?write debug, ?write default, $write hepmc, ?write lhef)

• MeV

Physical unit, energies in 106 electron volt.

• model

With this specifier, model = <MODEL NAME>, one sets the hard interaction physics model
for the processes defined after this model specification. The list of available models can
be found in Table 5.1. Note that the model specification can appear arbitrarily often
in a SINDARIN input file, e.g. for compiling and running processes defined in different
physics models.

• no

no is a function that works on a logical expression and a list, no <log expr> [<list>],
and returns true if and only if log expr is fulfilled for none of the entries in list, and
false otherwise. Examples: no Pt < 100 GeV [lepton] checks whether no lepton is
softer than 100 GeV. It is the logical opposite of the function all. Logical expressions
with no can be logically combined with and and or. (cf. also all, any, and, and or)

• n events

This specifier n events = <num> sets the number of events for the event generation of the
processes in the SINDARIN input files. Note that WHIZARD itself chooses the number
from the n events or from the luminosity specifier, whichever would give the larger
number of events. As this depends on the cross section under consideration, it might be

20 CHAPTER 3. HOW TO USE WHIZARD

different for different processes in the process list. WK: Is this correct? Do we really want
this? Furthermore, the n events or luminosity command has to be invoked after the
corresponding logical variable which tells WHIZARD to write an event file in a specific
format. (cf. luminosity, ?write debug, ?write default, $write hepmc, ?write lhef)

• observable

With this, observable = <obs spec>, the user is able to define a variable specifier
obs spec for observables. These can be reused in the analysis, e.g. as a record, as
functions of the fundamental kinematical variables of the processes. (cf. analysis,
record)

• or

This is the standard two-place logical connective that has the value true if one of its
operands is true, otherwise a value of false. It is applied to logical values, e.g. cut
expressions. (cf. also and).

• $physical unit

This is a string variable, $physical unit = "<unit name>’’, that allows to set a LATEXname
unit name for the physical unit of a label of an analysis plot. This unit is then also used
for calculations within the analysis set-up.

• plot

(cf. record)

• process

Allows to set a hard interaction process, either for a decay process decay proc as process
<decay proc> = <mother> -> <daughter1>, <daughter2>, ..., or for a scattering pro-
cess scat proc as <incoming1>, <incoming2> -> <outgoing1>, <outgoing2>,
Note that there can be arbitrarily many processes to be defined in a SINDARIN input
file. (cf. also restrictions)

• read slha

Tells WHIZARD to read in an input file in the SUSY Les Houches accord (SLHA), as
read slha ("slha file.slha"). Note that the files for the use in WHIZARD should
have the suffix .slha. (cf. also write slha)

• real

This is a constructor to specify real constants in the input file. Strictly speaking, it
is a unary function setting the value real val of the integer variable real var: real

<real var> = <real val>. (cf. also int and cmplx)

• ?rebuild

The logical variable ?rebuild = true/false specifies whether the matrix element code
for processes is re-generated by the matrix element generator O’Mega (e.g. if the process

3.2. SINDARIN – THE WHIZARD COMMAND LANGUAGE 21

has been changed, but not its name). This can also be set as a command-line option
whizard --rebuild. The default is false, i.e. code is never re-generated if it is present
and the MD5 checksum is valid. (cf. also recompile).

• ?recompile

The logical variable ?recompile = true/false specifies whether the matrix element
code for processes is re-compiled (e.g. if the process code has been manually modified by
the user). This can also be set as a command-line option whizard --recompile. The
default is false, i.e. code is never re-compiled if its corresponding object file is present.
(cf. also rebuild)

• record

The record constructor provides an internal data structure in SINDARIN input files.
Its syntax is in general record <record name> (<cmd expr>). The <cmd expr> could
be the definition of a tuple of points for a histogram or an eval constructor that tells
WHIZARD e.g. by which rule to calculate an observable to be stored in the record
record name. (cf. also eval)

• $restrictions

This is an optional argument for process definitions. It defines a string variable, process
<process name> = <particle1>, <particle2> -> <particle3>, <particle4>, ...

{ $restrictions = "<restriction def>" }. The string argument restriction def

is directly transferred during the code generation to the matrix element generator O’Mega.
It has to be of the form n1 + n2 + ... ~ <particle (list)>, where n1 and so on
are the numbers of the particles above in the process definition. The tilde specifies
a certain intermediate state to be equal to the particle(s) in particle (list). An ex-
ample is process eemm z = e1, E1 -> e2, E2 { $restrictions = "1+2 ~ Z" } re-
stricts the code to be generated for the process e−e+ → µ−µ+ to the s-channel Z-boson
exchange. (cf. also process)

• results

Only used in the combination show(results). Forces WHIZARD to print out a results
summary for the integrated processes. (cf. also show)

• scan

Constructor to perform loops over variables or scan over processes in the integration pro-
cedure. The syntax is scan <var> <var name> (<value list> or <value init> ->

<value fin> /<incrementor> <increment>) { <scan cmd> }. The variable var can
be specified if it is not a real, e.g. an integer. var name is the name of the variable
which is also allowed to be a predefined one like seed. For the scan, one can either
specify an explicit list of values value list, or use an initial and final value and a
rule to increment. The scan cmd can either be just a show to print out the scanned
variable or the integration of a process. Examples are: scan seed (32 -> 1 / / 2) {
show (seed value) } , which runs the seed down in steps 32, 16, 8, 4, 2, 1 (division
by two). scan mW (75 GeV, 80 GeV -> 82 GeV /+ 0.5 GeV, 83 GeV -> 90 GeV /*

~
~

22 CHAPTER 3. HOW TO USE WHIZARD

1.2) { show (sw) } scans over the W mass for the values 75, 80, 80.5, 81, 81.5, 82, 83
GeV, namely one discrete value, steps by adding 0.5 GeV, and increase by 20 % (the latter
having no effect as it already exceeds the final value). It prints out the corresponding
value of the effective mixing angle which is defined as a dependent variable in the model
input file(s). scan sqrts (500 GeV -> 600 GeV /+ 10 GeV) { integrate (proc) }
. integrates the process proc in eleven increasing 10 GeV steps in center-of-mass energy
from 500 to 600 GeV.

• seed

Integer variable seed = <num> that allows to set a specific random seed num. If not set,
WHIZARD takes the time from the system clock to determine the random seed.

• show

This is a unary function that is operating on specific constructors in order to print them
out in the WHIZARD screen output as well as the log file whizard.log. Examples
are show(<parameter name>) to issue a specific parameter from a model or a constant
defined in a SINDARIN input file, show(integral(<proc name>)), show(library),
show(results), or show(¡var¿) for any arbitrary variable. (cf. also echo, library,
results)

• simulate

This command invokes the generation of events for the process proc by means of simulate
(<proc>). (cf. also integrate, luminosity, n events)

• sqrts

Real variable in order to set the center-of-mass energy for the collisions (collider energy√
s, not hard interaction energy sqrtŝ): sqrts = <num> <phys unit>. The physical unit

can be one of the following eV, keV, MeV, GeV, and TeV. If absent, WHIZARD takes GeV

as its standard unit.

• TeV

Physical unit, for energies in 1012 electron volt.

• then

Alternative option inside a conditional clause, not mandatory, hence maybe be omitted,
cf. if.

• $title

This string variable sets the title of a plot in a WHIZARD analysis setup, e.g. a histogram
or an observable. The syntax is $title = "<your title>". This title appears as a
section header in the analysis file, but not in the screen output of the analysis. (cf. also
$description, $label, $xlabel, $ylabel).

• tolerance

Real variable that defines the tolerance with which the (logical) function expect accepts

3.2. SINDARIN – THE WHIZARD COMMAND LANGUAGE 23

process zee = Z -> e1, E1

process zuu = Z -> u, U

process zz = e1, E1 -> Z, Z

compile

integrate (zee) { iterations = 1:100 }

integrate (zuu) { iterations = 1:100 }

sqrts = 500 GeV

integrate (zz) { iterations = 3:5000, 2:5000 }

unstable Z (zee, zuu)

Figure 3.1: SINDARIN input file for unstable particles and inclusive decays.

equality or inequality: tolerance = <num>. This can e.g. be used for cross-section tests
and backwards compatibility checks. (cf. also expect)

• true

Constructor stating that a logical expression or variable is true, e.g. ?<log var> = true.
(cf. also false).

• unstable

This constructor allows to let final state particles of the hard interaction undergo a subse-
quent (cascade) decay (in the on-shell approximation). For this the user has to define the
list of desired Decay channels as unstable <mother> (<decay1>, <decay2>,),
where mother is the mother particle, and the argument is a list of decay channels. Note
that these have to be provided by the user as in the example in Fig. 3.1. First, the Z
decays to electrons and up quarks are generated, then ZZ production at a 500 GeV ILC
is called, and then both Zs are decayed according to the probability distribution of the
two generated decay matrix elements. This obviously allows also for inclusive decays.

• write analysis

The write analysis statement tells WHIZARD to write the analysis setup by the user
for the SINDARIN input file under consideration. If no $analysis filename is provided,
the analysis (including the histograms) are printed out on the screen, otherwise they are
written to a file defined by that specific string variable. (cf. also $analysis filename)

• ?write debug

Logical variable that, if set true, demands WHIZARD to write out an event file in a
long, verbose format for debugging purposes. Note that simulate has to be invoked for
this in order to work as well as either a non-zero number of events, n events, or a non-
vanishing luminosity, luminosity. The ?write debug flag has to be set before the event
or luminosity numbers! The standard name of the event file will be whizard.debug, but
can be redefined by the $file debug variable. (cf. $file debug, luminosity, n events,
simulate)

24 CHAPTER 3. HOW TO USE WHIZARD

• ?write default

Logical variable that, if set true, demands WHIZARD to write out an event file in a
standard ASCII format. Note that simulate has to be invoked for this in order to work
as well as either a non-zero number of events, n events, or a non-vanishing luminosity,
luminosity. The ?write default flag has to be set before the event or luminosity
numbers! The standard name of the event file will be whizard.default, but can be
redefined by the $file default variable. (cf. $file default, luminosity, n events,
simulate)

• $write hepmc

Logical variable that, if set true, demands WHIZARD to write out an event file in the
HepMC format (if externally linked). Note that simulate has to be invoked for this
in order to work as well as either a non-zero number of events, n events, or a non-
vanishing luminosity, luminosity. The ?write hepmc flag has to be set before the event
or luminosity numbers! The standard name of the event file will be whizard.hepmc, but
can be redefined by the $file hepmc variable. (cf. $file hepmc, luminosity, n events,
simulate)

• ?write lhef

Logical variable that, if set true, demands WHIZARD to write out an event file (new) Les
Houches event format (LHEF, with XML headers). Note that simulate has to be invoked
for this in order to work as well as either a non-zero number of events, n events, or a non-
vanishing luminosity, luminosity. The ?write lhef flag has to be set before the event
or luminosity numbers! The standard name of the event file will be whizard.lhef, but
can be redefined by the $file lhef variable. (cf. $file lhef, luminosity, n events,
simulate)

• write slha

Demands WHIZARD to write out a file in the SUSY Les Houches accord (SLHA). How
this file gets its info is still completely unknown to me! Hard-coded right now? Docu is
missing!!! (cf. also read slha)

• $xlabel

String variable, $xlabel = "<LaTeX code>", that sets the x axis label in a plot or his-
togram in a WHIZARD analysis. (cf. also label and $ylabel)

• $ylabel

String variable, $ylabel = "<LaTeX code>", that sets the y axis label in a plot or his-
togram in a WHIZARD analysis. (cf. also label and $xlabel)

3.3 WHISH – The WHIZARD Shell/Interactive mode

WHIZARD can be also run in the interactive mode using its own shell environment. This is
called the WHIZARD Shell (WHISH). For this purpose, one starts with the command

3.4. USING PROCESSES FROM SEVERAL DIFFERENT MODELS 25

/home/user$ whizard --interactive

or

/home/user$ whizard -i

The WHISH can be closed by the quit command:

whish? quit

3.4 Using processes from several different models

When using two different models which need an SLHA input file, these have to be provided
for both models. Otherwise WHIZARD will not be performing the phase-space setup for the
second process.

Note that when using more than one models, the setting of parameters after the last model
and process declarations only affects the active – i.e. the last – model. If one wants to set a
parameter for all models in the input file, one has to repeat the model setting for every defined
model. Athough this might seem cumbersome at first, it is nevertheless a sensible procedure
since the parameters defined by the user might anyhow not be defined or available for all chosen
models.

26 CHAPTER 3. HOW TO USE WHIZARD

Chapter 4

Examples

27

28 CHAPTER 4. EXAMPLES

Chapter 5

Implemented physics

5.1 The Monte-Carlo integration routine: VAMP

5.2 The Phase-Space Setup

5.3 The hard interaction models

5.3.1 The Standard Model and friends

5.3.2 Beyond the Standard Model

Acknowledgements

We would like to thank E. Boos, R. Chierici, K. Desch, M. Kobel, F. Krauss, N. Meyer,
K. Mönig, H. Reuter, T. Robens, S. Rosati, J. Schumacher, M. Schumacher, and C. Schwinn
who contributed to WHIZARD by their suggestions, bits of codes and valuable remarks and/or
used several versions of the program for real-life applications and thus helped a lot in debugging
and improving the code. Special thanks go to A. Vaughn and J. Weill for their continuos efforts
on improving the g95 and gfortran compilers, respectively.

29

30 CHAPTER 5. IMPLEMENTED PHYSICS

MODEL TYPE with CKM matrix trivial CKM

Yukawa test model --- Test

QED with e, µ, τ, γ --- QED

QCD with d, u, s, c, b, t, g --- QCD

Standard Model SM CKM SM

SM with anomalous gauge couplings SM ac CKM SM ac

SM with anomalous top couplings --- SM top

SM with K matrix --- SM KM

MSSM MSSM CKM MSSM

MSSM with gravitinos --- MSSM Grav

NMSSM NMSSM CKM NMSSM

extended SUSY models --- PSSSM

Littlest Higgs --- Littlest

Littlest Higgs with ungauged U(1) --- Littlest Eta

Littlest Higgs with T parity --- Littlest Tpar

Simplest Little Higgs (anomaly-free) --- Simplest

Simplest Little Higgs (universal) --- Simplest univ

SM with graviton --- Xdim

UED --- UED

SM with Z ′ --- Zprime

“SQED” with gravitino --- GravTest

Augmentable SM template --- Template

Table 5.1: List of models available in WHIZARD. There are pure test models or models
implemented for theoretical investigations, a long list of SM variants as well as a large number
of BSM models.

Bibliography

[1] T. Sjöstrand, Comput. Phys. Commun. 82 (1994) 74.

[2] A. Pukhov, et al., Preprint INP MSU 98-41/542, hep-ph/9908288.

[3] T. Stelzer and W.F. Long, Comput. Phys. Commun. 81 (1994) 357.

[4] T. Ohl, Proceedings of the Seventh International Workshop on Advanced Computing and
Analysis Technics in Physics Research, ACAT 2000, Fermilab, October 2000, IKDA-2000-
30, hep-ph/0011243; M. Moretti, Th. Ohl, and J. Reuter, LC-TOOL-2001-040

[5] T. Ohl, Comput. Phys. Commun. 120 (1999) 13.

[6] T. Ohl, Comput. Phys. Commun. 101 (1997) 269.

[7] M. Skrzypek and S. Jadach, Z. Phys. C49 (1991) 577.

[8] A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108 (1998) 56-74.

[9] E. Boos et al., in: Proc. Les Houches 2001, hep-ph/0109068

[10] P. Skands et al., arXiv:hep-ph/0311123.

[11] K. Hagiwara et al., arXiv:hep-ph/0512260.

[12] B. C. Allanach et al., in Proc. of the APS/DPF/DPB Summer Study on the Future of
Particle Physics (Snowmass 2001) ed. N. Graf, Eur. Phys. J. C 25 (2002) 113 [eConf
C010630 (2001) P125] [arXiv:hep-ph/0202233].

[13] J. A. Aguilar-Saavedra et al., arXiv:hep-ph/0511344.

31

	1 Introduction
	2 Installation
	2.1 Prerequisites and Installation
	2.1.1 WHIZARD self tests/checks

	2.2 Setting up a user work space

	3 How to use WHIZARD
	3.1 Getting Started
	3.1.1 Hello World
	3.1.2 A Simple Calculation

	3.2 SINDARIN – The WHIZARD command language
	3.2.1 Syntactic details of SINDARIN

	3.3 WHISH – The WHIZARD Shell/Interactive mode
	3.4 Using processes from several different models

	4 Examples
	5 Implemented physics
	5.1 The Monte-Carlo integration routine: VAMP
	5.2 The Phase-Space Setup
	5.3 The hard interaction models
	5.3.1 The Standard Model and friends
	5.3.2 Beyond the Standard Model

