
IPPP/10/94, DCPT/10/188

SecDec: A general program for sector

decomposition

Jonathon Carter a, Gudrun Heinrich b

aIPPP, Department of Physics, University of Durham, Durham DH1 3LE, UK

bMax-Planck-Institute for Physics, Föhringer Ring 6, 80805 Munich, Germany

Abstract

We present a program for the numerical evaluation of multi-dimensional poly-
nomial parameter integrals. Singularities regulated by dimensional regularisation
are extracted using iterated sector decomposition. The program evaluates the co-
efficients of a Laurent series in the regularisation parameter. It can be applied to
multi-loop integrals in Euclidean space as well as other parametric integrals, e.g.
phase space integrals.

PACS: 12.38.Bx, 02.60.Jh, 02.70.Wz

Key words: Perturbation theory, Feynman diagrams, infrared singularities,
multi-dimensional parameter integrals, numerical integration

PROGRAM SUMMARY

Manuscript Title: SecDec: A general program for Sector Decomposition

Authors: J. Carter, G. Heinrich

Program Title: SecDec

Journal Reference:

Catalogue identifier:

Licensing provisions: none

Programming language: Wolfram Mathematica, perl, Fortran

Computer: from a single PC to a cluster, depending on the problem

Operating system: Unix, Linux

RAM: depending on the complexity of the problem
Keywords: Perturbation theory, Feynman diagrams, infrared singularities, multi-
dimensional parameter integrals, numerical integration
PACS: 12.38.Bx, 02.60.Jh, 02.70.Wz
Classification:

4.4 Feynman diagrams, 5 Computer Algebra, 11.1 General, High Energy Physics

Preprint submitted to Elsevier 3 March 2011

and Computing.

Nature of problem:

Extraction of ultraviolet and infrared singularities from parametric integrals ap-

pearing in higher order perturbative calculations in gauge theories, e.g. multi-loop

Feynman integrals, Wilson loops, phase space integrals.

Solution method:

Algebraic extraction of singularities in dimensional regularisation using iterated

sector decomposition. This leads to a Laurent series in the dimensional regularisa-

tion parameter ǫ, where the coefficients are finite integrals over the unit-hypercube.

Those integrals are evaluated numerically by Monte Carlo integration.

Restrictions: Depending on the complexity of the problem, limited by memory and

CPU time. Multi-scale integrals can only be evaluated at Euclidean points.

Running time:

Between a few minutes and several days, depending on the complexity of the prob-

lem.

2

LONG WRITE-UP

1 Introduction

Sector decomposition is an algorithmic method to isolate divergences from
parameter integrals as they occur for instance in perturbative quantum field
theory. Originally it was devised by Hepp [1] in the context of the the proof of
the BPHZ theorem in order to disentangle overlapping ultraviolet singularities.
Similar ideas, applied to the subtraction of infrared divergences, can be found
e.g. in [2]. It was employed later to extract logarithmic mass singularities from
massive multi-scale integrals in the high energy limit at two loops [3,4].

In [5], the concept of sector decomposition was elaborated to a general algo-
rithm in the context of dimensional regularisation, allowing the isolation of
ultraviolet as well as infrared singularities from Feynman parameter integrals
in an automated way. First applications of this algorithm were the numeri-
cal evaluation of two-loop box diagrams at certain Euclidean points, see e.g.
[5–7]. More recently, the method has been used to numerically check a num-
ber of analytic three-loop and four-loop results [8–21], most of them produced
by either the public program FIESTA [22,23] or the code which is described
in the present article. Further references about recent applications of sector
decomposition to multi-loop calculations can be found in [23,24].

Sector decomposition also has been combined with other methods for a numeri-
cal calculation of loop amplitudes, first on a diagrammatic level in Refs. [25,26],
later for whole amplitudes in Refs. [27–30]. The latter approaches contain a
combination of sector decomposition and contour deformation [31–35], which
allows one to integrate the Feynman parameter representation of an amplitude
numerically in the physical region.

As phase space integrals in D dimensions can be written as dimensionally
regularised parameter integrals, sector decomposition can also serve to fac-
torise entangled singularity structures in the case of soft and collinear real
radiation. This idea was first presented in [36] and was subsequently applied
to calculate all master four-particle phase space integrals where up to two
particles in the final state can become soft and/or collinear [37]. Shortly after,
this approach has been extended to be applicable to exclusive final states as
well by expressing the functions produced by sector decomposition in terms of
distributions [38]. Further elaboration on this approach [39,40] has lead to dif-
ferential NNLO results for a number of processes [41–49]. The combination of
the Frixione-Kunszt-Signer subtraction scheme [50] for soft and collinear real
radiation with the decomposition into sectors to treat real radiation at NNLO,
as proposed recently in [51], is also promising with regards to the reduction

3

of the number of functions produced by the decomposition. A combination of
sector decomposition with non-linear variable transformations as proposed in
[52] can also serve to reduce considerably the number of functions to integrate,
but is less straightforward to automate completely.

To date, the method of sector decomposition has been applied successfully to
a considerable number of higher order calculations, for a review we refer to
[53,24]. Here we will concentrate on the method of sector decomposition from
a programming point of view.

Despite its success in practical applications, for quite some time there was
no formal proof for the existence of a strategy for the iterated sector decom-
position such that the iteration is always guaranteed to terminate. This gap
has been filled in Ref. [54], by mapping the problem to Hironaka’s Polyhedra
game [55] and offering three strategies which are proven to terminate. Bogner
and Weinzierl also implemented the algorithm in a public computer program
for iterated sector decomposition written in C++ [54]. A Mathematica inter-
face to this program, which also allows the calculation of contracted tensor
integrals, has recently been published in [56].

A different strategy guaranteed to terminate, leading to less subsectors than
the strategies of Ref. [54], was given by A.V. Smirnov and M. Tentyukov, who
implemented the algorithm in the public program FIESTA [22]. Based on a
detailed anaylsis of Hepp and Speer sectors in Ref. [57], an alternative strategy,
which is based on Speer sectors, has been implemented in FIESTA2 [23]. As
the latter strategy also uses information on the topology of the graph, it can
perform the decomposition more efficiently in certain cases.

Another group has implemented [58] the sector decomposition algorithm in
FORM [59]. Mapping sector decomposition to convex geometry and using algo-
rithms in computational geometry lead to a guaranteed terminating strategy
which seems to be optimal with regards to the number of produced subsec-
tors [60,61].

Compared to the existing packages, the present program for sector decomposi-
tion has several new features, the main ones being a sophisticated treatment of
(potential) numerical instabilities and the possibility to apply the program to
more general functions, like e.g. parameter integrals occurring in phase space
integrals over real radiation matrix elements, or functions including symbolic
parameters. Half-integer powers of polynomial functions are also allowed.

The structure of the article is as follows. In section 2, we briefly review the
theoretical framework. Then we give an overview of the program structure
and explain the individual components. The installation and usage of the pro-
gram are described in section 4, followed by a number of examples illustrating
different aspects of the program in section 5. The appendix contains more

4

details about timings and phase space parametrisations as well as a section
with further information fo the user.

2 Theoretical background

2.1 Feynman integrals

A general Feynman graph Gµ1...µR

l1...lR
in D dimensions at L loops with N propa-

gators and R loop momenta in the numerator, where the propagators can have
arbitrary, not necessarily integer powers νj , has the following representation
in momentum space:

Gµ1...µR

l1...lR
=

∫ L∏

l=1

dDκl

kµ1

l1
. . . kµR

lR
N∏

j=1
P

νj
j ({k}, {p}, m2

j)

dDκl =
µ4−D

iπ
D
2

dDkl , Pj({k}, {p}, m2
j) = q2j −m2

j + iδ , (1)

where the qj are linear combinations of external momenta pi and loop momenta
kl. Introducing Feynman parameters leads to

Gµ1...µR

l1...lR
=

Γ(Nν)
∏N

j=1 Γ(νj)

∞∫

0

N∏

j=1

dxj x
νj−1
j δ(1−

N∑

i=1

xi)
∫

dDκ1 . . .d
DκL

kµ1

l1
. . . kµR

lR





L∑

i,j=1

kT
i Mij kj − 2

L∑

j=1

kT
j ·Qj + J + i δ





−Nν

, (2)

where Nν =
∑N

j=1 νj , M is a L × L matrix containing Feynman parameters,
Q is an L-dimensional vector composed of external momenta and Feynman
parameters, and J contains kinematic invariants and Feynman parameters.

To perform the integration over the loop momenta kl, we perform the following
shift in order to obtain a quadratic form for the term in square brackets in
eq. (2):

k′
l = kl − vl , vl =

L∑

i=1

M−1
li Qi . (3)

After momentum integration one obtains

5

Gµ1...µR

l1...lR
=(−1)Nν

1
∏N

j=1 Γ(νj)

∞∫

0

N∏

j=1

dxj x
νj−1
j δ(1−

N∑

l=1

xl)

⌊R/2⌋
∑

m=0

(−1

2
)mΓ(Nν −m− LD/2)

[

(M̃−1 ⊗ g)(m) l̃(R−2m)
]Γ1,...,ΓR

× UNν−(L+1)D/2−R

FNν−LD/2−m
(4)

where

F(~x) =det(M)





L∑

j,l=1

Qj M
−1
jl Ql − J − i δ



 (5)

U(~x) =det(M)

M̃−1 =UM−1 , l̃ = U v

and ⌊R/2⌋ denotes the nearest integer less or equal to R/2. The expression
[(M̃−1⊗g)(m) l̃ (R−2m)]Γ1,...,ΓR stands for the sum over all different combinations
of R double-indices distributed to m metric tensors and (R − 2m) vectors l̃.
The double indices Γi = (l, µi(l)) , l ∈ {1, . . . , L}, i ∈ {1, . . . , R} denote the
ith Lorentz index, belonging to the lth loop momentum.

As can be seen from Eq. (4), the difference between scalar (R = 0) and
tensor (R > 0) integrals, once the Lorentz structure is extracted, is given
by the fact that there are additional polynomials of Feynman parameters
in the numerator. These polynomials can simply be included into the sector
decomposition procedure, thus treating contracted tensor integrals directly
without reduction to scalar integrals.

The functions U and F also can be constructed from the topology of the
corresponding Feynman graph. For more details we refer to [62,63,53,24].

U is a positive semi-definite function. Its vanishing is related to the UV sub-
divergences of the graph. Overall UV divergences, if present, will always be
contained in the prefactor Γ(Nν − m − LD/2). In the region where all in-
variants formed from external momenta are negative, which we will call the
Euclidean region in the following, F is also a positive semi-definite function
of the Feynman parameters xj . Its vanishing does not necessarily lead to an
IR singularity. Only if some of the invariants are zero, for example if some
of the external momenta are light-like, the vanishing of F may induce an IR
divergence. Thus it depends on the kinematics and not only on the topology
(like in the UV case) whether a zero of F leads to a divergence or not. The
necessary (but not sufficient) conditions for an IR divergence are given by the
Landau equations [64–66], which, in parameter space, simply mean that the
necessary condition F = 0 for an IR divergence can only be fulfilled if some
of the parameters xi go to zero, provided that all kinematic invariants formed

6

by external momenta are negative.

For a diagram with massless propagators, none of the Feynman parameters
occurs quadratically in the function F = F0 . If massive internal lines are

present, F gets an additional term F(~x) = F0(~x)+U(~x)
N∑

j=1
xjm

2
j . If the power

of the Feynman parameters in the polynomial forming F is larger than one for
at least two different parameters, initially or at a later stage in the iterated
decomposition, an infinite recursion can occur. This happens in the example
given in section 5.1.2 if the “naive” decomposition strategy is employed. We
have implemented a heuristic procedure to change to a different decomposition
strategy only in cases where at least two Feynman parameters occur quadrati-
cally, which lead to a terminating algorithm without producing a large number
of subsectors. We do not claim that this procedure is guaranteed to terminate,
but it proved useful for practical purposes.

2.2 General parameter integrals

The program can also deal with parameter integrals which are more general
than the ones related to multi-loop integrals. The only restrictions are that
the integration domain should be the unit hypercube, and the singularities
should be only endpoint singularities, i.e. should be located at zero or one.
The general form of the integrals is

I =

1∫

0

dx1 . . .

1∫

0

dxN

m∏

i=1

Pi(~x, {α})νi , (6)

where Pi(~x, {α}) are polynomial functions of the parameters xj , which can
also contain some symbolic constants {α}. The user can leave the parameters
{α} symbolic during the decomposition, specifying numerical values only for
the numerical integration step. This way the decomposition and subtraction
steps do not have to be redone if the values for the constants are changed.
The νi are powers of the form νi = ai + biǫ (with ai such that the integral is
convergent; note that half integer powers are also possible). We would like to
point out that most phase space integrals in D dimensions over real radiation
matrix elements can also be remapped to functions of the type (6). Examples
are given in section 5.

7

2.3 Iterated sector decomposition

Here we will review the basic algorithm of iterated sector decomposition only
briefly. For more details we refer to [5,24].

Our starting point is a function of the form of Eq. (6). Loop integrals in the
form of Eq. (4), with open Lorentz indices contracted by external momenta
or metric tensors, are a special case thereof, distinguished by the presence
of a δ-distribution which constrains the sum of the integration parameters.
Therefore loop integrals are treated somewhat differently than the more gen-
eral functions, meaning that the δ-constraint is integrated out in a special way
leading to the so-called primary sectors.

I. Generation of primary sectors (loop integrals only)

We split the integration domain into N parts and eliminate the δ-distribution
in such a way that the remaining integrations are from 0 to 1. To this aim we
decompose the integration range into N sectors, where in each sector l, xl is
largest:

∞∫

0

dNx =
N∑

l=1

∞∫

0

dNx
N∏

j=1

j 6=l

θ(xl − xj) . (7)

The integral is now split into N domains corresponding to N integrals Gl from
which we extract a common factor: G = (−1)NνΓ(Nν − LD/2)

∑N
l=1Gl. The

N generated sectors will be called primary sectors in the following. In the
integrals Gl we substitute

xj =







xlxj for j < l

xl for j = l

xlxj−1 for j > l

(8)

and then integrate out xl using the δ-constraint. As U ,F are homogeneous of
degree L,L + 1, respectively, and xl factorizes completely, we have U(~x) →
Ul(~t) x

L
l and F(~x) → Fl(~t) x

L+1
l and thus, using

∫

dxl/xl δ(1−xl(1+
∑N−1

k=1 xk)) =
1, we obtain

Gl =

1∫

0

N−1∏

j=1

dxj x
νj−1
j

UNν−(L+1)D/2
l (~x)

FNν−LD/2
l (~x)

, l = 1, . . . , N . (9)

8

Note that the singular behaviour leading to 1/ǫ–poles still comes from regions
where a set of parameters {xj} goes to zero.

II. Extraction of the singular factors

For functions of the form Eq. (6), we first have to determine which of the
Feynman parameters generate singularities at xj = 1, and which ones can lead
to singularities at zero and one. The paramters xj for which a denominator
vanishes at xj = 1 but not at xj = 0 should be remapped by the transformation
xj → 1 − xj . If the integrand can become singular at both endpoints of the
integration range for a paramter xj , we split the integration range at 1/2:
After the split

1∫

0

dxj =

1

2∫

0

dxj

︸ ︷︷ ︸

(a)

+

1∫

1

2

dxj

︸ ︷︷ ︸

(b)

(10)

and the substitution xj = zj/2 in (a) and xj = 1 − zj/2 in (b), all endpoint
singularities occur at zj → 0 only. This splitting is done automatically by the
program; the user only has to define which variables should be split.

At this stage our starting point is a parametric integral where the integrand
vanishes if some of the integration parameters go to zero. Our aim is to fac-
torise the singularities, i.e. extract them in terms of overall factors of type
x
aj+bjǫ
j , aj ≤ −1. We proceed as follows.

1. Determine a minimal set of parameters, say S = {xβ1
, . . . , xβr

}, such that
at least one of the functions Pi(~x, {α}) vanishes if the parameters of S are
set to zero.

2. The corresponding integration range is an r-cube which is decomposed into
r subsectors by decomposing unity according to

r∏

j=1

θ(1− xβj
≥ 0) θ(xβj

) =
r∑

k=1

r∏

j=1

j 6=k

θ(xβk
− xβj

≥ 0) θ(xβj
) . (11)

3. Remap the variables to the unit hypercube in each new subsector by the
substitution

xβj
→







xβk
xβj

for j 6= k

xβk
for j = k .

(12)

9

This gives a Jacobian factor of xr−1
βk

. By construction xβk
factorises from at

least one of the functions Pi(~x, {α}).

For each subsector the above steps have to be repeated as long as a set S
can be found such that one of the rescaled functions P̃i(~x, {α}) vanishes if the
elements of S are set to zero. This way new subsectors are created in each
subsector of the previous iteration, resulting in a tree-like structure after a
certain number of iterations. The iteration stops if the functions P̃i(~x, {α})
contain a constant term, i.e. if they are of the form

P̃i(~x, {α})=α0 + Q̃i(~x , {α}) , (13)

where Q̃i(~x, {α}) are polynomials in the variables xj , and α0 is a constant, i.e.
lim~x→0 Q̃i(~x, {α}) is nonzero.

The resulting subsector integrals have the general form

I =

1∫

0





N∏

j=1

dxj x
aj+bjǫ
j





m∏

i=1

P̃i(~x, {α})νi . (14)

The singular behaviour of the integrand now can be read off directly from the
exponents aj, bj for a given subsector integral.

III. Subtraction of the poles

For a particular xj , the integrand after the factorisation described above, is of
the form

Ij =

1∫

0

dxj x
aj+bjǫ
j I(xj , {xi 6=j}, ǫ) . (15)

If aj > −1, no subtraction is needed and one can go to the next variable xj+1.
If aj ≤ −1, one expands I(xj , {xi 6=j}, ǫ) into a Taylor series around xj = 0.
Subtracting the Taylor series (to order 1 p for |aj | = p+1) and adding it back
in integrated form, we obtain a part where the poles are subtracted and a
part exhibiting 1/ǫ poles times a function depending only on the remaining
integration parameters.

1 To account for half-integer exponents, e.g. aj = −3/2, we use ⌊|aj |⌋, denoting the
nearest integer less or equal to |aj |.

10

Ij =
⌊|aj |⌋−1
∑

p=0

1

aj + p+ 1 + bjǫ

I(p)
j (0, {xi 6=j}, ǫ)

p!
+

1∫

0

dxj x
aj+bjǫ
j R(~x, ǫ)

R(~x, ǫ) = I(~x, ǫ)−
⌊|aj |⌋−1
∑

p=0

I(p)
j (0, {xi 6=j}, ǫ)

xp
j

p!
. (16)

For aj = −1, expanding the above expression in ǫ is equivalent to an expansion
in “plus distributions” [67,38]

x−1+b ǫ =
1

b ǫ
δ(x) +

∞∑

n=0

(b ǫ)n

n!

[

lnn(x)

x

]

+

,

where
1∫

0

dx f(x) [g(x)/x]+ =

1∫

0

dx
f(x)− f(0)

x
g(x) , (17)

with the integrations over the terms containing δ(x) already carried out.

After having done the subtractions for each xj , all poles are extracted, such
that the resulting expression can be expanded in ǫ. This defines a Laurent
series in ǫ

I =
r∑

n=−LP

Cn ǫ
n +O(ǫr+1) , (18)

where the coefficients are finite parameter integrals of dimension (N −1−|n|)
for n < 0 and of dimension (N − 1) for n ≥ 0. LP denotes the leading pole,
which can be at most 2L for an L-loop integral. The finite coefficient functions
can be integrated by Monte Carlo integration if the Mandelstam invariants in
F respectively the numerical constants in a general integrand have been chosen
such that the integrand does not vanish in the integration domain.

Improving the numerical stability

For aj = −1 in eq. (16), the singularity is of logarithmic nature, i.e. ∼ log(Λ)
if a lower cutoff Λ for the parameter integral was used. In renormalizable
gauge theories, linear (aj = −2) or even higher (aj < −2) poles should not
occur. However, they can occur at intermediate stages of a calculation, and as
they are formally regulated by dimensional regularisation, a method has been
worked out for the program to be able to deal with higher than logarithmic
singularities efficiently. This method relies on integration by parts (IBP) in a
way which aims at maximal numerical stability.

11

Let us consider an integrand after subtraction, as the one in eq. (16), and
focus on only one variable, xj = x, and define

I(R, a, b) =

1∫

0

dx xa+bǫ R(x, ǫ) , (19)

where, in the case a < 0, R(x, ǫ) is O(x−a) as x → 0 by construction. Integra-
tion by parts gives

IBP(R, a, b) =
1

a + 1 + bǫ







[

xa+1+bǫR(x, ǫ)
]1

0
−

1∫

0

dx xa+1+bǫR′(x)






(20)

=
1

a + 1 + bǫ
{R(1, ǫ)− I(R′, a+ 1, b)} . (21)

As xa+1+bǫR(x, ǫ) vanishes as x → 0, the term ∼ R(0, ǫ) in the square bracket
in eq. (20) is zero.
Also notice that R′(x) ∼ x−a−1 as x → 0, so I(R′, a + 1, b) can be treated in
the same way.

For the case a = −1 we thus obtain, expanding in ǫ

IBP(R,−1, b) =− 1

bǫ

1∫

0

dxR′(x)
∞∑

n=1

(b ǫ)n

n!
lnn(x) . (22)

For a < −1, we can use eq. (21) to iterate this procedure until we reach
a >= −1.

This method is certainly beneficial in the case of numerical instabilities coming
from terms of the form [f(x)−f(0)]/x or [f(x)−f(0)−x f ′(0)]/x2 in R(x, ǫ),
leading to differences of large numbers for x → 0. The IBP method raises the
powers of x, trading them for additional logaritms in the integrand, which
can be integrated more easily by the Monte Carlo program. Note also that the
whole procedure is linear in R(x, ǫ), so it allows one to split R(x, ǫ) into smaller
functions which can be dealt with more easily by the numerical integrator.

Error treatment

We usually integrate the sum of a small set of functions stemming from the
ǫ-expansion of a certain pole structure individually, and afterwards sum all the
individual results contributing to a certain pole coefficient. The set of functions
to sum before integration is defined by the size of the individual functions: the
functions are summed until their sum reaches about two Megabytes.

12

The errors are calculated by adding the Monte Carlo errors of the individual
integrations in quadrature. It is possible that there are large cancellations
between different functions contributing to the same pole coefficient. In such
cases it is better to first sum all coefficient functions and then integrate. The
program offers the possibility to do so as an option which can be specified in
the input parameter file.

The user should be aware that for complicated functions containing many
subtractions, the Monte Carlo error estimate is not quite appropriate: it is
calculated on a purely statistical basis, scaling like 1/

√
N if N is the num-

ber of sampling points. However, this is only a reliable error estimate under
the assumption that the sampling has mapped all the important features of
the function (i.e. all peaks) suffiently precisely, and strictly is only valid for
square integrable functions. If the function is not square integrable (but in-
tegrable), the Monte Carlo estimate for the integral will still converge to the
true value, but the error estimate will become unreliable. For more involved
integrals, we are faced with functions which have gone through numerous de-
compositions and subtractions, such that their shape in the unit hypercube is
quite complicated, and therefore the naive Monte Carlo error estimate tends
to underestimate the “true” error.

Often the main source of underestimated errors in the final result is the fact
that there are a large number of integrations to sum, and so adding the errors
in quadrature would only give a truly appropriate error estimate if there were
no systematic errors in the numerical integration.

We should also note that converting the result to extract a different ǫ-dependent
prefactor may lead to cancellations between different contributions to a certain
pole coefficient such that the error estimate may be too optimistic in these
cases.

3 Structure of the program

The program consists of two parts, an algebraic part and a numerical part.
The algebraic part uses code written in Mathematica [68] and does the de-
composition into sectors, the subtraction of the singularities, the expansion in
ǫ and the generation of the files necessary for the numerical integration. In the
numerical part, Fortran functions forming the coefficient of each term in the
Laurent series in ǫ are integrated using the Monte Carlo integration program
BASES, version 5.1 [69], or one of the routines from the CUBA library, ver-
sion 2.1 [70]. The different subtasks are handled by perl scripts. The directory
structure of the program is shown in Fig. 1, while the flowchart in Fig. 2 shows
the basic flow of input/output streams.

13

SecDec

loop generalbasesv5.1 doc

srcperlsrc

subexpdecoutil

demos demos

subexpdecoutil

perlsrc src

Cuba 2.1

Fig. 1. Directory structure of the SecDec program.

The directories loop and general have the same global structure, only some
of the individual files are specific to loops or to more general parametric func-
tions. The directories contain a number of perl scripts steering the decompo-
sition and the numerical integration. The scripts use perl modules contained
in the subdirectory perlsrc.

The Mathematica source files are located in the subdirectories src/deco: files
used for the decomposition, src/subexp: files used for the pole subtraction and
expansion in ǫ, src/util: miscellaneous useful functions. For the translation
of the Mathematica expressions to Fortran77 functions we use the package
Format.m [71]. The subdirectories basesv5.1 and Cuba-2.1 contain the li-
braries for the numerical integration, taken from [69] and [70], respectively.
The documentation, created by robodoc [72] is contained in the subdirectory
doc. It contains an index to look up documentation of the source code in html
format by loading masterindex.html into a browser.

The intermediate files and the results will be stored in a subdirectory of the
working directory whose name mysubdir can be specified by the user (first
entry in param.input, leaving this blank is a valid option). A subdirectory of
mysubdir with the name of the graph, respectively integral to calculate will be
created by default. If the user would like to store the files in a directory which
is not the subdirectory of the working directory, for example in /scratch, he
can do this by specifying the full path in the second entry in param.input.
An example of a directory structure created by running the examples NPbox,
QED, ggtt1, A61, a user-defined 3-loop example, and a 4-loop example to be
written to the scratch disk is given in Fig. 3.

The directory created for each graph will contain subdiretories according to
the pole structure of the graph. The labelling for the pole structure is of the
form e.g. 2l0h0, denoting 2 logarithmic poles, no linear and no higher poles.

14

param.input

Template.m

makeFU.pl

decompose.pl

results.pl

graph ∗ .out
Mathematica output

./launch

compilation

BASES
subexp.pl

subtractions

expansion

launch integration

executables

Fortran functions :

polestructure/ ∗ .f

directory loop or general subdirectory, e.g. graph

graph[point]full.res

epstothe[i]/point[i].out

CUBA

Fig. 2. Flowchart showing the main steps the program performs to produce the result
files. In each of the subdirectories loop or general, the file Template.m can be used
to define the integrand. The produced files are written to a subdirectory created
according to the settings given in param.input. By default, a subdirectory with
the name of the graph or integrand is created to store the produced functions. This
directory will contain subdirectories according to the pole structure of the integrand.
The perl scripts (extension .pl) are steering the various steps to be performed by
the program.

We should point out that this labelling does not necessarily correspond to the
final pole structure of the integral. It is merely for book-keeping purposes, and
is based on the counting of the powers of the factorised integration variables.
In more detail, if i1 variables have power −1, i2 variables have a power −2 ≤
i2 < −1 and i3 variables have a power < −2, the labelling will be i1 l i2 h i3,
even though the non-logarithmic poles will disappear upon ǫ-expansion. In

15

2loop 3loop

A61NPbox QED ggtt1

/scratch

4loop

. . .

loop/demos/

Fig. 3. Example for a directory structure created by running the loop demo programs
NPbox, QED, ggtt1, A61. A four-loop example defined by the user to be written to
the scratch disk is also shown.

QED

2l0h0 1l0h0 0l0h0

epstothe− 2 epstothe − 1 epstothe− 1epstothe 0 epstothe 0 epstothe 0

Fig. 4. Example for a directory tree corresponding to the pole structure of the graph
QED contained in the demo programs.

particular, for half-integer powers, the labelling does not correspond to “true”
poles, but rather to terms which can be cast into functions like Γ(−3/2 − ǫ),
which are well-defined in the context of dimensional regularisation, where ǫ
can be regarded as an arbitrary (complex) parameter. Note also that in the
case of a prefactor containing 1/ǫ poles multiplying the parameter integral, the
poles which are flagged up at this stage of the program will only correspond
to the poles read off from the integration parameters. In any case, the final
result will be given to the order specified by the user in param.input.
Each of these “polestructure” directories contains further subdirectories where
the files for a particular power in epsilon are stored. An example is given in
Fig. 4.

The user only has to edit the following two files:

• param.input: (text file)
specification of paths, type of integrand, order in ǫ, output format, param-
eters for numerical integration, further options

• Template.m: (Mathematica syntax)
· for loop integrals: specification of loop momenta, propagators; optionally
numerator, non-standard propagator powers

16

· for general functions: specification of integration variables, integrand, vari-
ables to be split

To give a specific example rather than empty templates, the files param.input
and Template.m in the loop subdirectory contain the setup for example 1,
the non-planar massless on-shell two-loop box diagram, while those in the
general directory contain the setup for example 6, a hypergeometric function
of type 5F4.

Apart from these default parameter/template files, the program comes with
example input and template files in the subdiretories loop/demos respectively
general/demos, described in detail in section 5.

The user can choose the numerical integration routine and the settings for the
different integrators contained in the Cuba library in the file param.input.
The compilation of the chosen integration routine with the corresponding set-
tings will be done automatically by the program.

4 Installation and usage

Installation

The program can be downloaded from
http://www.ippp.dur.ac.uk/~gudrun/SecDec.html.

Installation is done by unpacking the tar archive, using the command tar xzvf
SecDec.tar.gz. This will create a directory called SecDec with the subdirecto-
ries as described above. Change to the SecDec directory and run ./install.

Prerequisites are Mathematica, version 6 or above, perl (installed by default
on most Unix/Linux systems) and a Fortran compiler (e.g. gfortran, ifort).
The install script only checks if Mathematica and perl are installed on the
system and inserts the corresponding path into the perl scripts. The install
script does not test the existence of a Fortran compiler because the compiler
should be specified by the user in param.input. If no compiler is specified, it
defaults to gfortran.

Usage

(1) Change to the subdirectory loop or general, depending on whether you
would like to calculate a loop integral or a more general parameter inte-
gral.

17

(2) Copy the files param.input and Template.m to create your own param-
eter and template files myparamfile, mytemplatefile.

(3) Set the desired parameters in myparamfile and define the propagators
etc. in mytemplatefile.

(4) Execute the command ./launch -p myparamfile -t mytemplatefile in the
shell.
If you omit the option -p myparamfile, the file param.input will be taken
as default. Likewise, if you omit the option -t mytemplatefile, the file
Template.m will be taken as default. If your files myparamfile, mytem-
platefile are in a different directory, say, myworkingdir, use the option
-d myworkingdir, i.e. the full command then looks like ./launch -d my-
workingdir -p myparamfile -t mytemplatefile, executed from the directory
SecDec/loop or SecDec/general.
Alternatively, you can call the launch script from any directory if you
prepend the path to the launch script, i.e. the command
path to launch/launch -p myparamfile -t mytemplatefile executed from
myworkingdir would run the program in the same way. path to launch
can be either the full or relative path for SecDec/loop or SecDec/general.

The ./launch command will launch the following perl scripts:
• makeFU.pl: (only for loop integrals) constructs the integrand functions
F ,U and the numerator function from the propagators and indices given
in Template.m.

• decompose.pl: launches the iterated sector decomposition
• subexp.pl: launches the subtractions and epsilon-expansions and writes
the Fortran functions. Depending on the “exe-flag” specified in the pa-
rameter file (see below for a detailed explanation of the flag), this script
also launches the compilation and the numerical integrations.

(5) Collect the results. Depending on whether you have used a single machine
or submitted the jobs to a cluster, the following actions will be performed:
• If the calculations are done sequentially on a single machine, the results
will be collected automatically (via results.pl called by launch). The
output file will be displayed with your specified text editor. The re-
sults are also saved to the files [graph] [point]epstothe*.res and
[graph] [point]full.res in the subdirectory subdir/graph (loops)
respectively subdir/integrand (general integrands) (name specified in
param.input, where you can also specify different names for different
numerical points).

• If the jobs have been submitted to a cluster: when all jobs have finished,
execute the command ./results.pl [-d myworkingdir -p myparamfile] in
a shell from the directory SecDec/loop or SecDec/general to create
the file containing the final results.
If the the user needs to change the batch system settings: manually

edit perlsrc/makejob.pm and perlsrc/launchjob.pm. This writes

18

the desired syntax to the scripts job[polestructure] in the corre-
sponding subdir/graph or subdir/integrand subdirectory.

(6) After the calculation and the collection of the results is completed, you
can use the shell command ./launchclean[graph] to remove obsolete files.
If called with no arguments, the script only removes object files, launch
scripts, makefiles and executables, but leaves the Fortran files created
by Mathematica, so that different numerical points can be calculated
without rerunning the Mathematica code. If called with the argument
’all’ (i.e. ./launchclean[graph] all), it removes everything except the result
files displaying the final result and the timings.

The ’exe’ flag contained in param.input offers the possibility to run the
program only up to certain intermediate stages. The flag can take values from
0 to 4. The different levels are:

exe=0: does the iterated sector decomposition and writes files containing
lists of subsector functions (graphsec*.out) for each pole structure to the
output subdirectory. Also writes the mathematica files subandexpand*.m

for each pole structure, which serve to do the symbolic subtraction, epsilon
expansion and creation of the Fortran files. Also writes the scripts
batch[polestructure] which serve to launch these jobs at a later stage.

exe=1: launches the scripts batch[polestructure]. This will produce the
Fortran functions and write them to individual subdirectories for each pole
structure.

exe=2: creates all the additional files needed for the numerical integration.
exe=3: compilation is launched to make the executables.
exe=4: the executables are run.

If the first steps of the calculation, e.g. the decomposition or the creation of
the Fortran functions, are already done, the following commands are available
to continue the calculation without having to restart from scratch:

• finishnumerics.pl [-d myworkingdir -p myparameterfile]:
if the ’exe’ flag in param.input resp. myworkingdir/myparameterfile is
set smaller than four, this will complete the calculation without redoing
previous steps.

• justnumerics.pl [-d myworkingdir -p myparameterfile]:
if you would like to redo just the numerical integration, for example to pro-
duce results for a different numerical point or to try out a different number
of sampling points, iterations etc. for the Monte Carlo integration: change
the values for the numerical point resp. the settings for the Monte Carlo
integration and the “name of the numerical point” in the parameter file,
and then use the command ./justnumerics.pl [-d myworkingdir -p mypa-
rameterfile] to redo only the numerical integrations (if the Fortran files f*.f
have been produced already). Using this option skips the Mathematica sub-

19

traction and epsilon expansion step which can be done once and for all,
as the variables at this stage are still symbolic. After completion of the
numerical integrations, use the command ./results.pl [-d myworkingdir -p
myparameterfile] to collect and display the results as above.

The program tries to detect the path to Mathematica automatically. In case
you get the message “path for Mathematica not automatically found”, please
insert the path to Mathematica on your system manually for the variable
$mathpath in the file perlsrc/mathlaunch.pl.

We also should mention that the code starts working first on the most compli-
cated pole structure, which takes longest. This is because in case the jobs are
sent to a cluster, it is advantageous to first send the jobs which are expected
to take the most time.

5 Description of Examples

5.1 Loop integrals

The examples described below can be found in the subdirectory loop/demos.

5.1.1 Example 1: Non-planar massless two-loop box

The non-planar massless two-loop box is a non-trivial example, as the sector
decomposition applied to the standard representation, produced by combin-
ing all propagators simultaneously with Feynman parameters, exhibits “non-
logarithmic poles” (i.e. exponents of Feynman parameters ≤ −1) in the course
of the decomposition. We should point out that, even though the program can
deal with linear or higher poles in a completely automated way, it is often
a good idea to investigate if the integrand can be re-parametrized such that
poles of this type do not occur, because these poles require complicated sub-
traction terms which slow down the calculation. Nonlinear transformations
as e.g. described in [52] can be useful in this context. Further, integrating
out first one loop momentum, and then combine the remaining propagators
with the obtained intermediate result using another set of Feynman parame-
ters often leads to a representation where at least one of the parameters can
be factorised without sector decomposition, thus speeding up the calculation
considerably. This is demonstrated for the non-planar massless two-loop box
in appendix 8.2, and the template to calculate the graph in this way can be
found in SecDec/general/demos.

20

p3p4

p1

p2

Fig. 5. The non-planar two-loop box, called NPbox in example 1.

To obtain results for the non-planar massless two-loop box shown in Fig. 5
without doing any analytical steps, copy the file loop/param.input to a
new parameter file, say paramNPbox.input, and specify the desired order
in ǫ, the numerical point and possible further options. Likewise, copy the
file loop/Template.m to a new template file, say templateNPbox.m (this al-
ready has been done for the examples described here, see the subdirectory
loop/demos). Then, in the loop/demos directory, use the command ../launch
-p paramNPbox.input -t templateNPbox.m. The file templateNPbox.m already
has the propagators of the non-planar double box predefined. In paramNPbox.input,
we defined the prefactor such that a factor of −Γ(3 + 2ǫ) is not included in
the numerical result: if we define

GNP (s, t, u) = −Γ(3 + 2ǫ)
4∑

n=0

Pn

ǫn
+O(ǫ) , (23)

the program should yield the results for Pn, given in Table 1. Note that ac-
cording to eq. (1), we always divide L-loop integrals by (iπ

D
2)L, so this factor

is never included in the numerical result. The decomposition produces 384
subsectors.

(s,t,u) (-1,-1,-1) (-1,-2,-3)

P−4 1.75006±1.3 × 10−4 0.41670±1.1 × 10−4

P−3 -2.99969± 0.00055 -0.9313 ±0.00067

P−2 -22.821 ± 0.003 -5.8599 ± 0.0035

P−1 113.629 ±0.013 42.79 ±0.02

P0 -395.27 ± 0.05 -162.73±0.09

Table 1
Numerical results for the points (s, t, u) = (−1,−1,−1) and (−1,−2,−3) of the
massless non-planar double box.

The result for the graph called NPbox at the numerical point called point
in the input file will be written to the file NPbox [point]full.res in the
subdirectory 2loop/NPbox, where 2loop is a subdirectory which has been
created by the program, using the directory name the user has specified in the
first entry of paramNPbox.input. By default, a subdirectory with the name
of the graph is created, but the user can also specify a completely different

21

1

63

52

4 7

Fig. 6. Blue (solid) lines denote massive particles.

directory (e.g. scratch) where the results will be written to (second entry in
paramNPbox.input).

More information about the decomposition is given in the file NPboxOUT.info.
Information about the numerical integration is contained in the files
[point]intfile.log in the subdirectories graph/polestructure/epstothe[i],
where “polestructure” is of the form e.g. 2l0h0, denoting 2 logarithmic poles
and 0 linear, 0 higher poles.

It should be emphasized that in param.input, the numbers for the Mandel-
stam invariants should be defined as the Euclidean values, so the values for
s, t, u, p2i should always be negative in param.input. Note also that the con-
dition s + t + u = 0 cannot be fulfilled numerically in the Euclidean region,
so it should not be used in onshell={...} in the template file to eliminate u
from the function F in the case of non-planar box graphs.

5.1.2 Example 2: Planar two-loop ladder diagram with massive on-shell legs

The purpose of this example is to show how to deal with diagrams where
the decomposition could run into an infinite recursion if the default strat-
egy is applied. The rungs of the ladder are massless particles (e.g. photons),
while the remaining lines are massive on-shell particles, depicted by solid
(blue) lines in Fig. 6. To run this example, execute the command ../launch
-p paramQED.input -t templateQED.m from the loop/demos directory. Only
the primary sectors number one and seven are at risk of running into infinite
recursion, therefore they are listed in the third-last item of paramQED.input
as the ones to be decomposed by a different strategy. The results for the nu-
merical point called point will be written to the file QED [point]full.res

in the subdirectory 2loop/QED. Numerical results for some sample points are
given in Table 2. The kinematic points are defined by the mass m and the
Mandelstam variables s = (p1 + p2)

2, t = (p2 + p3)
2. We extracted a prefactor

of Γ(1 + ǫ)2.

22

(s,t, m) (-0.2,-0.3,1) (-3/2,-4/3,1/5)

P−2 -1.56161± 1.33×10−4 -2.1817 ± 0.0003

P−1 -5.3373 ±0.0018 -1.4701 ±0.0026

P0 1.419 ±0.025 30.191± 0.014

P1 62.46 ± 0.18 140.73±0.057

P2 284.76 ± 0.87 450.67±0.19

Table 2
Numerical results up to order ǫ2 for the points (s, t,m) = (−0.2,−0.3, 1) and
(−3/2,−4/3, 1/5) of the two-loop ladder diagram shown in Fig. 6. An overall factor
of Γ(1 + ǫ)2 is not included in the numerical result.

m1

m2

p3

p4

p1 p2

ggtt1

p1 p2

m1

p3

p4

ggtt2

Fig. 7. Non-planar graphs ocurring in the calculation of gg → tt̄ at NNLO. Blue
(solid) lines denote massive particles.

5.1.3 Example 3: Non-planar two-loop diagrams with two massive on-shell
legs

This example gives results for two non-planar graphs ocurring in the calcula-
tion of gg → tt̄ at NNLO, shown in Fig. 7. The analytic results for these graphs
are not yet available. Numerical results at Euclidean points can be produced by
choosing numerical values for the invariants s, t, u,m2 in paramggtt1.input

respectively paramggtt2.input and then executing the command ../launch -p
paramggtt1.input -t templateggtt1.m in the loop/demos directory, analogously
for ggtt2. Results for two sample points are shown in Table 3.

5.1.4 Example 4: A rank one tensor two-loop box

In order to demonstrate how to run the program for integrals with non-trivial
numerators, we give the example of a rank one planar massless on-shell two-
loop box, where we contract one loop momentum in the numerator by 2 pµ3 .

23

ggtt1

(s, t, u,m2
1,m

2
2) (-0.5,-0.4,-0.1,0.17,0.17) (-1.5,-0.3,-0.2,3,1)

P0 -38.0797±0.0027 -0.19904±1.5 × 10−5

P1 -263.22± 0.015 -0.71466±6 × 10−5

P2 -936.86± 0.06 -1.45505± 0.0002

ggtt2

(s, t, u,m2
1,m

2
2) (-0.5,-0.4,-0.1,0.17,0) (-1.5,-0.3,-0.2,3,0)

P−4 -10.9159 ± 0.0006 -0.13678±1.46 × 10−5

P−3 -43.5213 ± 0.0075 -0.2087 ±0.00024

P−2 165.384 ± 0.048 3.3417 ±0.0014

P−1 20.842±0.268 -6.593±0.007

P0 2117.5 ± 1. 57 20.42±0.04

Table 3
Numerical results for the diagrams shown in Fig. 7. The finite diagram ggtt1 has
been calculated up to order ǫ2. An overall factor of Γ(1 + ǫ)2 is extracted.

G =
∫

dDk dDl

(iπ
D
2)2

2 p3 · k
k2(k − p1)2(k + p2)2(k − l)2(l − p1)2(l + p2)2(l + p2 + p3)2

,

(24)

where we omitted the iδ terms in the propagators. The result for the kinematic
sample point (s, t, u) = (−3,−2, 5) is shown in Table 4. Note that in this

(s,t,u) (-3,-2,5)

P−4 -0.319449 ±1.7× 10−5

P−3 0.46536 ±8× 10−5

P−2 0.5848 ±0.0004

P−1 -3.3437 ± 0.0013

P0 -1.6991± 0.0035

Table 4
Numerical results for the point (s, t, u) = (−3,−2, 5) of the rank one two-loop ladder
diagram given by eq. (24). An overall factor of Γ(1 + ǫ)2 has been extracted.

example, we used a positive value for the Mandelstam invariant u, which
seems to contradict the requirement to have only Euclidean values for the
invariants. However, in this case we can do this because the function F does
not depend on u at all. The numerator does depend on u, but as a numerator
which is not positive definite does not spoil the numerical convergence, we can
as well choose a numerical value for u such that the relation s + t + u = 0 is

24

Fig. 8. The three-loop vertex diagram A6,1 with the dotted propagator raised to the
power 1 + ǫ.

fullfilled. This has the advantage that it allows us to use the latter relation to
simplify the numerator.

5.1.5 Example 5: A three-loop vertex diagram with ǫ-dependent propagator
powers

This example shows how to calculate diagrams with propagator powers dif-
ferent from one. The results for the graph A6,1 (notation of Ref. [8]), given
in Table 5, can be produced by running ../launch -p paramA61.input -t tem-
plateA61.m from the loop/demos directory.

P−3 P−2 P−1 P0 P1 P2

0.16666 1.8334 18.123 125.32 889.96 5325.3

Table 5
Numerical results for the diagram shown in Fig. 8 with the dotted propagator raised
to the power 1 + ǫ. The errors are below one percent.

The analytical result for this diagram with general propagator powers is given
in Ref. [8] and is also given in the file 3loop/A61/A61analytic.m to allow
comparisons between analytical and numerical results for arbitrary propagator
powers.

5.2 More general polynomial functions

The examples described below can be found in the subdirectory general/demos.

5.2.1 Example 6: Hypergeometric functions

As an example for “general” polynomial functions, we consider the hypergeo-
metric functions pFp−1(a1, . . . , ap; b1, . . . , bp−1; β), using the integral represen-
tation recursively:

25

pFp−1(a1, . . . , ap; b1, . . . , bp−1; β) =
Γ(bp−1)

Γ(ap)Γ(bp−1 − ap)
(25)

1∫

0

dz (1− z)−1−ap+bp−1 z−1+ap
p−1Fp−2(a1, . . . , ap−1; b1, . . . , bp−2; β) ,

2F1(a1, a2; b1; β) =
Γ(b1)

Γ(a2)Γ(b1 − a2)

1∫

0

dz (1− z)−1−a2+b1 z−1+a2 (1− β z)−a1 .

Considering 5F4(a1, . . . , a5; b1, . . . , b4; β) with the values a1 = ǫ, a2 = −ǫ, a3 =
−3ǫ, a4 = −5ǫ, a5 = −7ǫ, b1 = 2ǫ, b2 = 4ǫ, b3 = 6ǫ, b4 = 8ǫ, β = 0.5 we obtain
the results shown in Table 6. The “analytic result” has been obtained using
HypExp [73,74].

ǫ order analytic result numerical result time taken (secs)

ǫ0 1 1.0000002 ±4× 10−7 2

ǫ1 0.189532 0.189596±0.00036 21

ǫ2 -2.299043 -2.306±0.011 124

ǫ3 55.46902 55.61 ±0.39 248

ǫ4 -1014.39 -1018.4±5.9 429

Table 6
Results for the hypergeometric function 5F4(ǫ,−ǫ,−3ǫ,−5ǫ,−7ǫ; 2ǫ, 4ǫ, 6ǫ, 8ǫ;β) at
β = 0.5. The timings in the last column are the ones for the numerical integration.
The time taken for decomposition, subtraction and ǫ-expansion was 11 secs.

This result can be produced by typing ./launch -d demos -p param5F4.input
-t template5F4.m in the subdirectory general, or by typing ../launch -p
param5F4.input -t template5F4.m in the subdirectory general/demos.

The program can also deal with functions containing half integer exponents.
Table 7 shows results for 4F3 with arguments a1 = −4ǫ, a2 = −1/2 − ǫ, a3 =
−3/2 − 2ǫ, a4 = 1/2 − 3ǫ, b1 = −1/2 + 2ǫ, b2 = −1/2 + 4ǫ, b3 = 1/2 + 6ǫ.
These results can be produced by the command ../launch -p param4F3.input
-t template4F3.m in the subdirectory general/demos.

ǫ order analytic result numerical result time taken (secs)

ǫ0 1 0.999997 ±1.7× 10−5 1.6

ǫ1 -4.27969 -4.2810 ± 0.0055 54

ǫ2 -26.6976 -26.625 ±0.121 90

Table 7
Results for the hypergeometric function 4F3(−4ǫ,−1/2 − ǫ,−3/2 − 2ǫ, 1/2 −
3ǫ;−1/2 + 2ǫ,−1/2 + 4ǫ, 1/2 + 6ǫ;β) at β = 0.5.

26

5.2.2 Example 7: Phase space integrals

Sector decomposition can be useful for the calculation of phase space integrals
where infrared divergences are regulated dimensionally. This is particularly
the case for double real radiation occurring in NNLO calculations involving
massive particles, where analytic methods show their limitations.

Here we give examples of 2 → 3 phase space integrals, which should be con-
sidered as part of a 2 → n phase space written in factorised form. We choose
particles 3 and 4 to be massless, while p5 is the momentum of a massive state,
either a single particle or a pseudo-state formed by n additional momenta p̃i
in the final state, i.e. p5 =

∑n
i=5 p̃i. After all integrations have been mapped

to the unit interval, we have integrals of the form

∫

dΦ3=Cǫ

∫ 4∏

i=1

dxi [x1(1− x1)x2(1− x2)]
D−4

2 [x3 (1− x3)]
D−3

[x4 (1− x4)]
D−5

2 [1− β x3 (1− x2)]
2−D , (26)

β=1− m2

s
, Cǫ =

1

(2π)2D−3
dΩD−3dΩD−4 s

D−32D−8β2D−5 . (27)

The derivation is given in the appendix, section 8.3.

The invariants in this parametrisation are given by

s13=−sβ x3 (1− x1)

s23=−sβ x3 x1

s34= β K x3 (1− x2) , K =
sβ (1− x3)

1− β x3 (1− x2)

s35= s
1− β(1− x2x3)

1− β x3(1− x2)

s14=−K
{

t− + x4 (t
+ − t−)

}

= −K s̃14

s24=−K
{

u+ − x4 (u
+ − u−)

}

= −K s̃24 ,

where

t± =
(√

x1(1− x2)±
√

x2(1− x1)
)2

(28)

u±=
(√

(1− x1)(1− x2)±
√
x1x2

)2

.

We would like to point out that for the examples below, more convenient
parametrisations, i.e. parametrisations where the variables in the denominator

27

1

2

4

5

3 3

5

4 1

2

Fig. 9. Interference of diagrams leading to factors of s35s23 in the denominator.

factorise, and/or reflect symmetries of the squared matrix element, certainly
do exist. However, the purpose of the examples is to illustrate that the code
can deal with denominators which are amongst the most complicated ones
which do occur in NNLO real radiation involving two (unresolved) massless
particles in the final state, where they cannot always be “rotated away” by
suitable transformations. A hybrid approach combining sector decomposition
with convenient parametrisations/transformations is certainly the method of
choice for real radiation at NNLO. The program can be used to evaluate the
integrals occurring in such an approach.

Three massless particles in the final state

We first consider a case where p5 is a massless particle, i.e. the limit β → 1 in
eq. (26). If we combine the phase space with the toy matrix element 1/(s35s23),
we have singularities at x1 = 0, x2 = 0 and x3 = 0. Such denominators come
e.g. from the interference of diagrams as shown in Fig. 9.

∫

dΦ3
s2

s35s23
=Cǫ

1∫

0

4∏

i=1

dxi [(1− x1)(1− x2)]
D−4

2 [x1 x2]
D−6

2 xD−5
3 (1− x3)

D−3

[x4 (1− x4)]
D−5

2 [1− x3 (1− x2)]
3−D . (29)

The term [1− x3 (1−x2)]
3−D goes to zero for x3 → 1, x2 → 0. Although x3 = 1

does not lead to a singularity in the above example, for numerical stability
reasons, and having in mind the presence of more complicated matrix elements
than our toy example, it is preferable to transform this factor to an expression
which is finite in the above limits. Splitting the x3 integration at 1/2 and
then doing sector decomposition achieves this goal. The program will do this
automatically if the template file contains splitlist={3}, to tell the program
that the integration over x3 should be split at 1/2. Of course the singularities
at xi = 0 will also be extracted automatically.

Using the command ../launch -p params23s35.input -t templates23s35.m in the
subdirectory general/demos, sector decomposition leads to the result given
in Table 8.

28

P−3 P−2 P−1 P0

-1.5705± 0.0005 -4.3530 ± 0.0025 1.712± 0.005 31.040± 0.014

Table 8
Results for the integral given by eq. (29). The factor Cǫ is not included in the
numerical result.

Two massless and one massive particles in the final state

The example in this subsection illustrates the program option to exclude cer-
tain parts of the integrand from the decomposition, even though they can
become zero at certain values of the integration parameters. This can be use-
ful if a particular term is known not to lead to a singularity. Note that terms
with powers ≥ 0 are excluded from the decomposition by default.

As an example we pick an integral over s14, where the line singularity has been
remapped already (see appendix, section 8.3).

∫

dΦ3
s β

s14
= 2Cǫ

1∫

0

dx1dx2dx3dx4[x4 (1− x4)]
D−5

2 xD−3
3 (1− x3)

D−4 (30)

[1− β x3 (1− x1 + x1x2)]
3−D xD−4

1 xD−5
2 [(1− x1)(1− x2)(1− x1 + x1x2)]

D−4

2

[

(
√

(1− x1)(1− x2)−
√
1− x1 + x1x2)

2 + 4 x4

√

(1− x1)(1− x2)(1− x1 + x1x2)
]4−D

.

Choosing the option “n” for “no decomposition” in the definition of the inte-
grand for the term in square brackets [. . .]4−D (see templates14.m), there will
be no decomposition in the variables x2, x4, although this term vanishes in
the limit x2, x4 → 0, but this limit does not lead to a singularity. The result,
which can be produced by ../launch -p params14.input -t templates14.m in
the subdirectory general/demos, is given in Table 9.

P−1 P0

-1.12635 ± 0.0003 -8.771 ± 0.003

Table 9
Numerical result for the integral given by eq. (30) for β=0.75. The factor 2Cǫ is not
included in the numerical result.

6 Conclusions and outlook

We have presented a program for the numerical evaluation of multi-loop inte-
grals in Euclidean space, as well as the evaluation of more general parameter
integrals in the context of dimensional regularisation. Singularities which lead

29

to poles in 1/ǫ are extracted automatically using iterated sector decomposi-
tion. The program then produces finite functions forming the coefficients of a
Laurent series in ǫ, which are evaluated numerically by Monte Carlo integra-
tion.

In the case of loop integrals, the program can deal with arbitrary tensor in-
tegrals, where the corresponding numerator function is constructed automat-
ically. Non-standard propagator powers, e.g. powers depending on ǫ, are also
suppported. In the case of general polynomial functions, the program also can
deal with cases where the integration parameters or the polynomials present
in the integrand are raised to half-integer powers. Constants can be left sym-
bolic at the sector decomposition stage; their values can be specified later at
the numerical integration stage, such that the decomposition has to be done
only once and for all while the numerical values for the constants still can be
changed.

The code is publicly available at
http://www.ippp.dur.ac.uk/~gudrun/SecDec.html and comes with vari-
ous examples and detailed documentation. Different choices of numerical in-
tegration packages are possible, i.e. the Monte Carlo program Bases [69] and
the ones from the Cuba library given in [70]. For a future version, we plan
to include alternative tools to generate optimised functions, e.g. the one de-
scribed in [75]. A version which includes non-linear transformations in an
automated way, combined with the extension to integrands containing e.g.
physical thresholds, requiring complex contour integration, is also planned.

7 Acknowledgements

We would like to thank Daniel Mâıtre for useful comments on the program
and the manuscript. We also are grateful to P.-F. Monni, M. Zentile and
G. Welsh for testing the program, and C. Studerus for conversation on the
master integrals for tt̄ production. This research was supported by the British
Science and Technology Facilities Council (STFC).

8 Appendix

8.1 Timings for a 4-loop two-point diagram

In order to give an idea about the timings for a complicated example which we
ran on several processors, we give the timings for the four-loop graph shown in

30

Fig. 10. The coefficient of each pole order is composed of a number of functions

Fig. 10. A four-loop two-point master integral

which can be integrated individually, such that the time taken for the longest
job equals the total time for a given pole order, provided that the contributing
functions are integrated in parallel. The files to run the integration of these
functions in parallel are created by the program automatically. The number
of integrations to run individually depends on the size and number of the
regular subsector functions contributing at each pole order: these functions
are summed until their sum reaches about one Megabyte, and then integrated
individually, preferably in parallel.

Stage Time for longest job (secs) nb of functions Total time (secs)

Sector Decomposition 615 2160

Subtraction & ǫ-expansion 809 3767

Numerical integration ǫ−1 156 5 508

Numerical integration ǫ0 422 28 4720

Numerical integration ǫ1 492 28 5946

Numerical integration ǫ2 2172 29 8123

Table 10
Timings for the diagram shown in Fig. 10. The time taken for the longest job equals
the total time for a given pole order if the contributing functions are integrated in
parallel. The number of sampling points was 500000 for each pole order. The last
column shows the timings which would result from a calculation in series.

The timings are listed in Table 10. For information we also give the timings
which would result from a serial calculation in the third column of Table 10.
The results are shown in Table 11.

In this calculation, the symmetry of the problem was used, so only four pri-
mary sectors were evaluated. The corresponding multiplicities of the primary
sectors are taken into account automatically, provided they are specified in
param.input.

31

Order Analytical result Numerical result

ǫ−1 -10.3692776 -10.371±0.002

ǫ0 -70.99081719 -71.002±0.013

ǫ1 -21.663005 -21.65±0.12

ǫ2 Unknown 2833.79±0.92

Table 11
“Analytical” and numerical results for the diagram shown in Fig. 10. The analytical
result can be found in [16].

8.2 Another representation of the non-planar two-loop box

Here we derive a representation of the non-planar two-loop box where one
integration parameter factorises naturally, such that it can be integrated out
analytically, leaving a representation which can be evaluated in a completely
automated way by the routines in SecDec/general, the evaluation being con-
siderably faster than the one of example 5.1.1. This procedure is not limited
to our particular example, but requires an analytical step of introducing a
convenient parametrisation.

The expression for the non-planar two-loop box shown in Fig. 5 is given by

GNP =
∫ dDk dDl

(iπ
D
2)2

1

k2(k + p2)2(k − p1)2(k − l)2(l + p2)2(k − l + p4)2(l + p2 + p3)2
.

(31)

Considering first the integration over the loop momentum l only, we have a
one-loop box as shown in Fig. 11 with P1 = p1 − k, P2 = p2 + k. Feynman

P1

p4 P2

p3

Fig. 11. The “inner” box as part of the non-planar two-loop box shown in Fig. 5.

parametrisation for this one-loop subgraph leads to

I1=
∫

dDl

iπ
D
2

1

(k − l)2(l + p2)2(k − l + p4)2(l + p2 + p3)2

=Γ(2 + 2ǫ)
∫ 4∏

i=1

dxi δ(1−
4∑

j=1

xj)F(~x, k)−2−ǫ (32)

32

F(~x, k)=−(p1 + p4 − k)2 x1x3 − (p1 + p3 − k)2 x2x4 − (k + p2)
2 x1x2 − (p1 − k)2 x3x4 .

Now we substitute

x1 = t2 (1− t3) , x2 = t1t3 , x3 = (1− t1) t3 (33)

and integrate out the δ-constraint to obtain

I1=Γ(2 + ǫ)

1∫

0

dt1dt2dt3 [t3 (1− t3)]
−1−ǫ

[

−(p1 + p4 − k)2 t2t̄1 − (p1 + p3 − k)2 t1t̄2 − (k + p2)
2 t1t2 − (p1 − k)2 t̄1t̄2

]−2−ǫ

=
2Γ(2 + ǫ)Γ(−ǫ)Γ(1 − ǫ)

Γ(1− 2ǫ)

1∫

0

dt1dt2 (34)

[

−(p1 + p4 − k)2 t2t̄1 − (p1 + p3 − k)2 t1t̄2 − (k + p2)
2 t1t2 − (p1 − k)2 t̄1t̄2

]−2−ǫ
,

where we used the shorthand notation t̄i = 1− ti. Now we combine the above
expression with the remaining propagators, treating the expression in square
brackets in eq. (34) as a fourth propagator with power 2 + ǫ. One can use
the SecDec code to calculate the resulting function integrand function F2,
although this is an easy calculation to do by hand. One obtains

GNP =
−2 Γ(3 + 2ǫ)Γ(−ǫ)Γ(1− ǫ)

Γ(1− 2ǫ)

1∫

0

dt1dt2

∫ 4∏

i=1

dzi z
1+ǫ
4 δ(1−

4∑

j=1

zj)F2(~z)
−3−2ǫ

F2(~z)=−s12 z2z3 − T z1z4 − P 2
3 z2z4 − P 2

4 z3z4 ,

where

T = s23 t2(1− t1) + s13 t1(1− t2) , sij = (pi + pj)
2 ,

P 2
3 = s12 (1− t1)(1− t2) , P

2
4 = s12 t1t2 . (35)

With the substitutions

z4 = t3t4 , z3 = t3 (1− t4) , z2 = (1− t3) t5 , z1 = (1− t3) (1− t5) (36)

we finally obtain

GNP =
−2 Γ(3 + 2ǫ)Γ(−ǫ)Γ(1 − ǫ)

Γ(1− 2ǫ)

1∫

0

dt1dt2dt3dt4dt5 t
−1−ǫ
3 (1− t3) t

1+ǫ
4

[

F2(~t)
]−3−2ǫ

F2(~t) =−s12 t̄3t̄4t5 − T t̄3t4t̄5 − P 2
3 t̄3t4t5 − P 2

4 t3t4t̄4 , t̄i = 1− ti .

33

In this form the integrand can be fed into the sector decomposition routine for
“general integrands”. The corresponding template file templatexbox.m can be
found in SecDec/general/demos.

8.3 Phase space parametrisation of a 2 → 3 phase space

The D−dimensional phase space for p1 + p2 → p3 + p4 + p5 is given by

dΦ3=
[5∏

j=3

dDpj
(2π)D−1

]

δ+(p23 −m2
3)δ

+(p24 −m2
4)δ

+(p25 −m2
5)(2π)

Dδ(D)
(

p1 + p2 −
5∑

j=3

pj
)

.

Using

∫

dDpj δ
+(p2j −m2

j) =
∫

dD−1~pj dEj δ(E
2
j − ~p 2

j −m2
j) θ(Ej)

=
1

2

∫

dEj dΩ
(j)
D−2 |~pj|D−3

∣
∣
∣
|~pj |=

√
E 2

j
−m2

j

,

∫

dΩD−2=
2π

D−1

2

Γ(D−1
2

)
,

and eliminating p5 by momentum conservation, one obtains

∫

dΦ3=
1

(2π)2D−3

1

4

∫

dE3 dE4 dΩ
(3)
D−2 |~p3|D−3 dΩ

(4)
D−2 |~p4|D−3

δ((p1 + p2 − p3 − p4)
2 −m2

5) . (37)

Having NNLO phase spaces in mind, let us assume that we have two massless
particles in the final state (which may become unresolved), so m2

3 = m2
4 = 0,

and p5 is the momentum of a massive state, m2
5 = m2, either a single particle

or a pseudo-state formed by n additional momenta p̃i in the final state, i.e.
p5 =

∑n
i=5 p̃i. In this case we can parametrise the momenta p1 . . . p4 as

p1=

√
s

2
(1,~0(D−2), 1)

p2=

√
s

2
(1,~0(D−2),−1)

p3=E3 (1,~0
(D−4), sin η sin θ1, cos η sin θ1, cos θ1) (38)

=E3 (1,~0
(D−4), ~n3)

p4=E4 (1,~0
(D−4), ~n4)

34

where we choose ~n4 such that

~n4=










1 0 0

0 cos θ1 sin θ1

0 − sin θ1 cos θ1



















sin φ sin θ2

cosφ sin θ2

cos θ2










=










sinφ sin θ2

cos θ1 cosφ sin θ2 + sin θ1 cos θ2

cos θ1 cos θ2 − sin θ1 cosφ sin θ2










Thus

dΩ
(3)
D−2= d(cos θ1) (1− cos2 θ1)

D−4

2 dΩ
(η)
D−3

dΩ
(4)
D−2= d(cos θ2) (1− cos2 θ2)

D−4

2 dφ (sinφ)D−4 dΩD−4 . (39)

Due to overall rotational invariance around the beam axis, we can integrate
out the azimuthal angle η and use η = 0 in eq. (38), leading to ~n3 ·~n4 = cos θ2.
We obtain

dΦ3=
1

4

1

(2π)2D−3
dΩD−3dΩD−4 d(cos θ1) d(cos θ2) d(cosφ) dE3Θ(E3) dE4Θ(E4)

(E3E4)
D−3

(

sin2 θ1 sin2 θ2
)D−4

2 (sin2 φ)
D−5

2

δ(m2 − (p1 + p2 − p3 − p4)
2) (40)

δ(m2− (p1+p2−p3−p4)
2) = δ(s−m2−2

√
s (E3+E4)+2E3E4(1−~n3 ·~n4)) .

Now we have to choose which variable to eliminate using the δ-constraint. In
our example, we will eliminate E4, leading to

E4 =
s−m2 − 2

√
sE3

2(
√
s−E3 (1− ~n3 · ~n4))

. (41)

The constraint Θ(E4) leads to

Emax
3 =

s−m2

2
√
s

=

√
s

2
β where β = 1− m2

s
. (42)

We substitute

E3=

√
s

2
β x3 ⇒ E4 =

√
s

2
β

1− x3

1− β x3(1− x2)

cos θ1 =2 x1 − 1 , cos θ2 = 2 x2 − 1 , cosφ = 2 x4 − 1

to obtain

35

dΦ3=
1

(2π)2D−3
dΩD−3dΩD−4 s

D−32D−8β2D−5

4∏

i=1

dxi [x1(1− x1)x2(1− x2)]
D−4

2 [x3 (1− x3)]
D−3

[x4 (1− x4)]
D−5

2 [1− β x3 (1− x2)]
2−D . (43)

The invariants in this parametrisation are given by

s13=−sβ x3 (1− x1)

s23=−sβ x3 x1

s34= β K x3 (1− x2) , K =
sβ (1− x3)

1− β x3 (1− x2)

s35= s
1− β(1− x2x3)

1− β x3(1− x2)

s14=−K
{

t− + x4 (t
+ − t−)

}

= −K s̃14

s24=−K
{

u+ − x4 (u
+ − u−)

}

= −K s̃24 ,

where

t± =
(√

x1(1− x2)±
√

x2(1− x1)
)2

(44)

u±=
(√

(1− x1)(1− x2)±
√
x1x2

)2

.

Physical singular limits:

x3 → 0 : 3 soft , x3 → 1 : 4 soft ,

x1 → 1 : 3 ‖ 1 , x1 → 0 : 3 ‖ 2 , x2 → 1 : 3 ‖ 4 .

We observe that s̃14 has a line singularity at x4 = 0, x1 = x2. We can decouple
the problem at x4 = 0 from the line singularity x1 = x2 by the transforma-
tion [38]

x4 =
t− (1− z4)

t− + z4 (t+ − t−)
⇒ s̃14 =

t+t−

t− + z4 (t+ − t−)
, (45)

leading to

1∫

0

dx4 [x4 (1− x4)]
D−5

2 (s̃14)
−1 =

1∫

0

dz4 [z4 (1− z4) t
+t−]

D−5

2

[

t− + z4 (t
+ − t−)

]4−D

36

=

1∫

0

dz4 [z4 (1− z4)]
D−5

2

∣
∣
∣x1(1− x2)− x2(1− x1)

∣
∣
∣

D−5

[

(
√

x1(1− x2)−
√

x2(1− x1))
2 + 4 z4

√

x1(1− x1)x2(1− x2)
]4−D

.

Now we split the x2-integration range at x2 = x1 and remap to the unit cube:

1∫

0

dx2f(x1, x2) =

x1∫

0

dx2f(x1, x2)

︸ ︷︷ ︸

(1)

+

1∫

x1

dx2f(x1, x2)

︸ ︷︷ ︸

(2)

where we substitute x2 = x1 z2 in (1) and x2 = x1+(1−x1) z2 in (2). Using the
fact that the contribution from region (2) equals the first one if we transform
z2 → 1 − z2 and x1 → 1 − x1 and combining with the original phase space
given in eq. (43), we obtain

∫

dΦ3
1

s14
=

1

(2π)2D−3
dΩD−3dΩD−4 s

D−42D−7β2D−6 (46)

1∫

0

dx1dz2dx3dz4[z4 (1− z4)]
D−5

2 xD−3
3 (1− x3)

D−4 [1− β x3 (1− x1 + x1z2)]
3−D

xD−4
1 zD−5

2 [(1− x1)(1− z2)(1− x1 + x1z2)]
D−4

2

[

(
√

(1− x1)(1− z2)−
√
1− x1 + x1z2)

2 + 4 z4
√

(1− x1)(1− z2)(1− x1 + x1z2)
]4−D

.

8.4 Troubleshooting

Below we give possible reasons and solutions for problems which may arise
during use of the program.

• The function F is zero:
verify the on-shell conditions onshell={...} in the file mytemplate.m where
you defined the integrand. By default, the external legs have been set to be
light-like (p2i = ssp[i] = 0). If you calculate a massless two-point integral or
a one-scale 3-point integral, at least one scale must be different from zero
(e.g. set ssp[1] = −1 for a two-point function with external momentum p1,
which amounts to factoring out the overall scale).
Remember that the program by default replaces p2i by ssp[i], (pi + pj)

2

by sp[i, j]. (This is done in src/deco/calcFU.m). If symbols different from
pi are used for the external momenta, the user has to define their numerical
values in his template file mytemplate.m in the list onshell.

37

Example: for external vectors called p, q, define numerical values for the
invariants formed by p and q, e.g. onshell={p2 → −1, q2 → 0, p∗q → −0.5}.
Alternatively, you can map to the predefined names for the invariants, e.g.
onshell={p2 → ssp[1], q2 → ssp[2], p ∗ q → (sp[1, 2] − ssp[1] − ssp[2])/2}.
This latter solution allows you to leave the invariants symbolic and specify
numerical values only at the numerical integration stage, by assigning the
corresponding numerical values in param.input.
The user can check if the functions F , U and numerator look as expected

by looking at the file FUN.m in the integralname/ subdirectory.
• The numerical integration takes very long:
apart from the fact that this is to be expected for complicated integrands,
other reasons could be
· the integrand still contains undefined symbols at the numerical integra-
tion stage because the numerical values for the constants have not been
properly defined (e.g. values for which F is not of definite sign, respec-
tively the general function develops a singularity within the integration
range). Things to do are: check the function F in the file FUN.m in the
integralname/ subdirectory (in the loop case); check the log files of the
numerical integration in the subdiretories
integralname/polestructure/epstothe[i], where “polestructure” is of
the form e.g. 2l0h0, denoting 2 logarithmic poles and 0 linear, 0 higher
poles.

· you chose a very large number of Monte Carlo points and/or a very large
number of iterations in the input file

· for functions defined in SecDec/general: verify if there is a singularity
for xi → 1 rather than only for xi → 0 and if yes, split this variable at
1/2 by adding its label to the splitlist.

• the results do not appear in an editor window:
either you did not specify an editor in param.input (last entry) or your sys-
tem is unable to open the editor window. In this case just look at the result
file located in the integralname subdirectory (where integralname is the
name for the calculated integral or graph, specified by you in param.input,
third item). The result file is called integralname [point]full.res.

• you get the message “path for Mathematica not automatically found”:
Insert the path to Mathematica on your system manually for the variable
$mathpath in the file perlsrc/mathlaunch.pl.

References

[1] K. Hepp, Commun. Math. Phys. 2 (1966) 301.

[2] E. R. Speer, Annales Poincare Phys. Theor. 26 (1977) 87.

[3] M. Roth and A. Denner, Nucl. Phys. B 479 (1996) 495 [arXiv:hep-ph/9605420].

38

[4] A. Denner and S. Pozzorini, Nucl. Phys. B 717 (2005) 48 [arXiv:hep-
ph/0408068].

[5] T. Binoth and G. Heinrich, Nucl. Phys. B 585 (2000) 741 [arXiv:hep-
ph/0004013].

[6] T. Binoth and G. Heinrich, Nucl. Phys. B 680 (2004) 375 [arXiv:hep-
ph/0305234].

[7] G. Heinrich and V. A. Smirnov, Phys. Lett. B 598 (2004) 55 [arXiv:hep-
ph/0406053].

[8] T. Gehrmann, G. Heinrich, T. Huber and C. Studerus, Phys. Lett. B 640 (2006)
252 [arXiv:hep-ph/0607185].

[9] G. Heinrich, T. Huber and D. Maitre, Phys. Lett. B 662 (2008) 344
[arXiv:0711.3590 [hep-ph]].

[10] G. Heinrich, T. Huber, D. A. Kosower and V. A. Smirnov, Phys. Lett. B 678

(2009) 359 [arXiv:0902.3512 [hep-ph]].

[11] P. A. Baikov, K. G. Chetyrkin, A. V. Smirnov, V. A. Smirnov and
M. Steinhauser, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519 [hep-ph]].

[12] M. Czakon, J. Gluza and T. Riemann, Nucl. Phys. B 751 (2006) 1 [arXiv:hep-
ph/0604101].

[13] R. Boughezal and M. Czakon, Nucl. Phys. B 755 (2006) 221 [arXiv:hep-
ph/0606232].

[14] H. M. Asatrian, A. Hovhannisyan, V. Poghosyan, T. Ewerth, C. Greub and
T. Hurth, Nucl. Phys. B 749 (2006) 325 [arXiv:hep-ph/0605009].

[15] A. V. Smirnov and M. Tentyukov, Nucl. Phys. B 837 (2010) 40 [arXiv:1004.1149
[hep-ph]].

[16] P. A. Baikov and K. G. Chetyrkin, Nucl. Phys. B 837 (2010) 186
[arXiv:1004.1153 [hep-ph]].

[17] R. N. Lee, A. V. Smirnov and V. A. Smirnov, JHEP 1004 (2010) 020
[arXiv:1001.2887 [hep-ph]].

[18] R. N. Lee, A. V. Smirnov and V. A. Smirnov, arXiv:1005.0362 [hep-ph].

[19] R. N. Lee and V. A. Smirnov, arXiv:1010.1334 [hep-ph].

[20] T. Gehrmann, E. W. N. Glover, T. Huber, N. Ikizlerli and C. Studerus, JHEP
1006 (2010) 094 [arXiv:1004.3653 [hep-ph]].

[21] T. Gehrmann, E. W. N. Glover, T. Huber, N. Ikizlerli and C. Studerus,
arXiv:1010.4478 [hep-ph].

[22] A. V. Smirnov and M. N. Tentyukov, Comput. Phys. Commun. 180 (2009) 735
[arXiv:0807.4129 [hep-ph]].

39

[23] A. V. Smirnov, V. A. Smirnov and M. Tentyukov, arXiv:0912.0158 [hep-ph].

[24] G. Heinrich, Int. J. Mod. Phys. A 23 (2008) 1457 [arXiv:0803.4177 [hep-ph]].

[25] A. Ferroglia, M. Passera, G. Passarino and S. Uccirati, Nucl. Phys. B 650 (2003)
162 [arXiv:hep-ph/0209219].

[26] T. Binoth, G. Heinrich and N. Kauer, Nucl. Phys. B 654 (2003) 277 [arXiv:hep-
ph/0210023].

[27] A. Lazopoulos, T. McElmurry, K. Melnikov and F. Petriello, Phys. Lett. B 666

(2008) 62 [arXiv:0804.2220 [hep-ph]].

[28] A. Lazopoulos, K. Melnikov and F. Petriello, Phys. Rev. D 76 (2007) 014001
[arXiv:hep-ph/0703273].

[29] C. Anastasiou, S. Beerli and A. Daleo, JHEP 0705 (2007) 071 [arXiv:hep-
ph/0703282].

[30] C. Anastasiou, S. Beerli and A. Daleo, Phys. Rev. Lett. 100 (2008) 241806
[arXiv:0803.3065 [hep-ph]].

[31] D. E. Soper, Phys. Rev. Lett. 81 (1998) 2638 [arXiv:hep-ph/9804454].

[32] D. E. Soper, Phys. Rev. D 62 (2000) 014009 [arXiv:hep-ph/9910292].

[33] T. Binoth, J. P. Guillet, G. Heinrich, E. Pilon and C. Schubert, JHEP 0510

(2005) 015 [arXiv:hep-ph/0504267].

[34] Z. Nagy and D. E. Soper, Phys. Rev. D 74 (2006) 093006 [arXiv:hep-
ph/0610028].

[35] W. Gong, Z. Nagy and D. E. Soper, Phys. Rev. D 79 (2009) 033005
[arXiv:0812.3686 [hep-ph]].

[36] G. Heinrich, Nucl. Phys. Proc. Suppl. 116 (2003) 368 [arXiv:hep-ph/0211144].

[37] A. Gehrmann-De Ridder, T. Gehrmann and G. Heinrich, Nucl. Phys. B 682

(2004) 265 [arXiv:hep-ph/0311276].

[38] C. Anastasiou, K. Melnikov and F. Petriello, Phys. Rev. D 69 (2004) 076010
[arXiv:hep-ph/0311311].

[39] T. Binoth and G. Heinrich, Nucl. Phys. B 693 (2004) 134 [arXiv:hep-
ph/0402265].

[40] C. Anastasiou, K. Melnikov and F. Petriello, Phys. Rev. Lett. 93 (2004) 032002
[arXiv:hep-ph/0402280].

[41] C. Anastasiou, K. Melnikov and F. Petriello, Phys. Rev. Lett. 93 (2004) 262002
[arXiv:hep-ph/0409088].

[42] C. Anastasiou, K. Melnikov and F. Petriello, Nucl. Phys. B 724 (2005) 197
[arXiv:hep-ph/0501130].

40

[43] C. Anastasiou, K. Melnikov and F. Petriello, JHEP 0709 (2007) 014 [arXiv:hep-
ph/0505069].

[44] C. Anastasiou, G. Dissertori and F. Stockli, JHEP 0709 (2007) 018
[arXiv:0707.2373 [hep-ph]].

[45] K. Melnikov and F. Petriello, Phys. Rev. Lett. 96 (2006) 231803 [arXiv:hep-
ph/0603182].

[46] K. Melnikov and F. Petriello, Phys. Rev. D 74 (2006) 114017 [arXiv:hep-
ph/0609070].

[47] K. Melnikov, Phys. Lett. B 666 (2008) 336 [arXiv:0803.0951 [hep-ph]].

[48] S. Biswas and K. Melnikov, JHEP 1002 (2010) 089 [arXiv:0911.4142 [hep-ph]].

[49] R. Gavin, Y. Li, F. Petriello and S. Quackenbush, arXiv:1011.3540 [hep-ph].

[50] S. Frixione, Z. Kunszt and A. Signer, Nucl. Phys. B 467 (1996) 399 [arXiv:hep-
ph/9512328].

[51] M. Czakon, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274 [hep-ph]].

[52] C. Anastasiou, F. Herzog and A. Lazopoulos, arXiv:1011.4867 [hep-ph].

[53] V. A. Smirnov, Feynman integral calculus, Springer, Berlin (2006), 283 p.

[54] C. Bogner and S. Weinzierl, Comput. Phys. Commun. 178 (2008) 596
[arXiv:0709.4092 [hep-ph]].

[55] H. Hironaka, Ann. Math. 79 (1964) 109.

[56] J. Gluza, K. Kajda, T. Riemann and V. Yundin, arXiv:1010.1667 [hep-ph].

[57] A. V. Smirnov and V. A. Smirnov, JHEP 0905 (2009) 004 [arXiv:0812.4700
[hep-ph]].

[58] T. Ueda and J. Fujimoto, PoS ACAT08 (2008) 120 [arXiv:0902.2656 [hep-ph]].

[59] J. A. M. Vermaseren, New features of FORM, arXiv:math-ph/0010025.

[60] T. Kaneko and T. Ueda, Comput. Phys. Commun. 181 (2010) 1352
[arXiv:0908.2897 [hep-ph]].

[61] T. Kaneko and T. Ueda, arXiv:1004.5490 [hep-ph].

[62] N. Nakanishi, Graph Theory and Feynman Integrals (Gordon and Breach, New
York, 1971).

[63] O. V. Tarasov, Phys. Rev. D 54 (1996) 6479 [arXiv:hep-th/9606018].

[64] L. D. Landau, Nucl. Phys. 13 (1959) 181.

[65] R.J. Eden et al., The Analytic S-Matrix (Cambridge University Press, 1966).

[66] F. V. Tkachov, Int. J. Mod. Phys. A 14 (1999) 683 [arXiv:hep-ph/9703423].

41

[67] I. Gelfand and G. Shilov, Generalized Functions, Volume 1 (Academic Press,
New York, 1964).

[68] Mathematica, Copyright by Wolfram Research.

[69] S. Kawabata, Comput. Phys. Commun. 88 (1995) 309.

[70] T. Hahn, Comput. Phys. Commun. 168 (2005) 78 [arXiv:hep-ph/0404043].

[71] M. Sofroniou, http://library.wolfram.com/infocenter/MathSource/60/ (2005).

[72] F. Slothouber et al., http://www.xs4all.nl/˜rfsber/Robo/robodoc.html .

[73] T. Huber and D. Maitre, Comput. Phys. Commun. 175 (2006) 122 [arXiv:hep-
ph/0507094].

[74] T. Huber and D. Maitre, Comput. Phys. Commun. 178 (2008) 755
[arXiv:0708.2443 [hep-ph]].

[75] T. Reiter, Comput. Phys. Commun. 181 (2010) 1301 [arXiv:0907.3714 [hep-
ph]].

42

