
ScannerS manual: version-1.0.2

Marco O. P. Sampaio,a Rui Santosb,c

aDepartamento de F́ısica da Universidade de Aveiro and I3N

Campus de Santiago, 3810-183 Aveiro, Portugal
bCentro de F́ısica Teórica e Computacional, Universidade de Lisboa

1649-003 Lisboa, Portugal
cInstituto Superior de Engenharia de Lisboa - ISEL

1959-007 Lisboa, Portugal

E-mail: msampaio@ua.pt, rsantos@cii.fc.ul.pt

Abstract: ScannerS is a tool for automatizing scans of the parameter space of arbitrary

scalar potentials beyond the Standard Model, from an expression for the scalar potential

and a user defined analysis. The code provides automatic routines to determine the scalar

spectrum, analyse stability and numerous interfaces to external libraries for analysis. This

first version of the manual provides some information on how to run the code and the usage

of the external interfaces. Please refer also to our first publication with the code for details

of the numerical strategy [1].

Keywords: Computational Tools, Higgs boson, Beyond Standard Model

mailto:msampaio@ua.pt
mailto:rsantos@cii.fc.ul.pt

Contents

1 Getting started 1

1.1 Minimal requirements 1

1.2 Quick Start: A 2HDM scan 2

2 Step by step to model/analysis implementation 8

2.1 Inserting the model in Mathematica – ScannerSInput.nb 8

2.2 Defining the analysis –ScannerSUser.cpp 10

2.2.1 User analysis functions 11

2.2.2 Global stability and boundedness from below 12

2.2.3 Other user defined options 13

2.2.4 Automatic modules 14

3 Using the external interfaces 14

3.1 SuperIso (tested with v3.3) 15

3.2 HiggsBounds/Signals 15

3.3 SusHi (tested with v1.1.0) 16

3.4 Hdecay (tested with v6.0.0) 17

3.5 Micromegas (tested with v2.4.5.) 18

A List of map variables for the Hdecay interface 19

1 Getting started

1.1 Minimal requirements

To run the standalone examples of the code (with no interfaces to other HEP libraries),

ScannerS needs the following packages installed:

• Mathematica7 or later: This is to able to run the file ScannerSInput.nb where the

scalar potential for the model is entered (as well as the options for the scan), which

generates an input file,model.in, for the C++ program.

• The Gnu Scientific Library (GSL – see http://www.gnu.org/software/gsl/): This

is used by the source code for several mathematical operations.

• A C++ compiler (such as g++) and gnu make (or equivalent).

For details on how to use the external interfaces please see Section 3. To have a basic

understanding of how the code works it is better to start with the default standalone

example in the next section.

– 1 –

http://www.gnu.org/software/gsl/

1.2 Quick Start: A 2HDM scan

Let us start with an example for the two Higgs doublet model (2HDM) which performs a

scan of the scalar potential of the Z2 symmetric class of models with potential

V = m2
11Φ
†
1Φ1 +m2

22Φ
†
2Φ2 −m2

12(Φ
†
2Φ1 + c.c.) +

1

2
λ1|Φ1|4 +

1

2
λ2|Φ2|4+

+ λ3|Φ1|2|Φ2|2 + λ4|Φ†1Φ2|2 +
1

2
λ5

(
(Φ†1Φ2)

2 + c.c.
)

(1.1)

The steps to follow are:

1. Download and unpack the latest source:

https://www.hepforge.org/downloads/scanners

$ tar -xf scanners-x.x.x.tar.gz

$ cd scanners-x.x.x/

(replace x.x.x by the version numbers)

In this directory you find:

$ ls

AUTHORS ChangeLog COPYING doc/ examples/ makefile model.in

README ScannerScore/ ScannerSInput.nb ScannerSUser.cpp

• ScannerScore/: The source code of the program (not to be edited by the user).

• doc/: The documentation of the program with the manual and .cpp files de-

scribing some useful pieces of source code.

• examples/: Various example directories, each containing the analysis files nec-

essary to run them.

• License information and README file.

• The user editable files: makefile, ScannerSInput.nb, ScannerSUser.cpp.

2. Check the makefile: Open the makefile and check that the compilers are set

correctly.

#...

#############################

1) Choose your compilers

#############################

compiler=g++

compilerf77=gfortran

#...

If the gsl library is not installed in the default search paths specify additional paths

– 2 –

https://www.hepforge.org/downloads/scanners

#...

############################

2) Standard search Paths

############################

#Optionally add search paths here to include files and libraries

#Use format = -I/Incpath1 -I/Incpath2 etc...

SystemIncPath= -I/usr/local/include

#Use format = -L/libpath1 -L/libpath2 etc...

SystemLibPath= -L/usr/lib64

#...

3. Execute ScannerSInput.nb: The ScannerSInput.nb notebook contains the expres-

sion for the scalar potential (Vscalar) that the user can adapt

Vscalar = ComplexExpand[L[0]Φ1Dag.Φ1+L[1]Φ1Dag.Φ1 +...

as well as: i) definitions of the ranges for the various parameters in the scan, ii)

switches to turn on and off options and iii) variables to indicate the number of

couplings and fields. Table 1 lists all the variables available in the notebook, which

are discussed in detail in Sect. 2.1.

After opening this notebook and selecting Evaluate Notebook, an input file, model.in

is generated in the working directory. This serves as input for the C++ program (a

pre-generated model.in file is in the distribution).

4. Check/edit the User Analysis file – ScannerSUser.cpp:

The third file to be edited is ScannerSUser.cpp. Here the user has access to several

template functions for: i) initial calculations which are executed before starting the

scan (UserInitCalcs), ii) calculations to analyse each generated point (UserAnalysis)

and iii) final calculations after the scan is over (UserFinalCalcs). In this simple ex-

ample all are empty except the function UserAnalysis

bool UserAnalysis(PhiRef & Phi,LambdaRef & L,MassRef & Mass,

MmixingRef & Mixing){

//

// ENTER CODE FOR YOUR TESTS/OUTPUT DURING THE SCAN //

//

...

}

which prints the values of the Masses (Mass[i]), couplings (L[i]) and VEVs (Phi[i])

to the output file:

– 3 –

...

//

////////// Final print out//////////////

//

cout<< "--- Masses ---"<< endl;

for(size_t i=0; i!=Phi.size();++i){

cout <<Mass[i]<< endl;

}

cout<< "--- Couplings ---"<< endl;

for(size_t i=0; i!=L.size();++i){

cout << L[i]<< endl;

}

cout<< "--- VEVs ---"<< endl;

for(size_t i=0; i!=Phi.size();++i){

cout << Phi[i]<< endl;

}

cout<<endl;

return true;

}

Note that this function returns true or false, so if the user wishes to reject the

point before output (so that the program tries to generate a new point), a condition

can be written such as

bool UserAnalysis(PhiRef & Phi,LambdaRef & L,MassRef & Mass,

MmixingRef & Mixing){

//

// ENTER CODE FOR YOUR TESTS/OUTPUT DURING THE SCAN //

//

if(...some_condition...)

return false;

//

////////// Final print out//////////////

//

...

}
Such a condition could be for example a cross-section limit to be compared with a

a predicted value computed from the current parameter space point. Note that the

mixing matrix is also available through the variable Mixing.

There are two more template functions where the user provides expressions for the

boundedness from below conditions (CheckStability) and the global minimum con-

– 4 –

dition (CheckGlobal). The corresponding expressions are already entered for this

2HDM example.

Finally, there are three template functions to re-parametrise: i) the VEVs that are

scanner over (MyPhiParametrization), ii) the mixing matrix (MyInternalMixing)

and iii) to impose conditions among model parameters (MyCoupMassRelations). In

this example only the first is activated in ScannerSInput.nb (see also Sect. 2.1) such

that the usual 2HDM parametrisation is used, i.e.

Phi[2] ≡ v1 = v cosβ , β ≡ PhiPar[0]

Phi[6] ≡ v2 = v sinβ (1.2)

with v = 246 GeV, as seen in the following stretch of code

void MyPhiParametrization(const PhiParamVec & PhiPar,PhiVec & Phi){

//////////////////////////

// Variables:

// PhiPar[] : Vector of VEV parameters

// Phi[] : Vector of VEVs

///////////////////////////

// Description:

//...

//...

Phi[2]=246*cos(PhiPar[0]);

Phi[6]=246*sin(PhiPar[0]);

}

These template functions will be discussed in detail in Sect. 2.2.3.

5. Compile the code and generate 10 points:

Now we are ready to compile the code. In the terminal do

$ make

$./ScannerS --nscan 10
or

$./ScannerS -i model.in --nscan 10

to specify the name of the input file (the default is assumed to be model.in). An

output file is generated with the default name model.out1. If you wish to specify a

different filename run with the option -o, i.e.

$./ScannerS -i model.in -o output_file_name --nscan 10

It is also possible to redirect std::clog and std::cerr so that log and error messages

go to specific text files. For a list of available options run

$./ScannerS --help

Finally open the output file model.out to see the results for the 10 points. Note

1Note that std::cout is redirected by default to output to model.out.

– 5 –

that the format of the output file is completely user defined, so you can change it in

ScannerSUser.cpp according to your needs.

6. Run 1 point in VERBOSE mode: A particularly useful feature of the code is the

VERBOSE mode. This option allows for the user to see an automatic output of the

internal analysis done by the code, for each point it attempts to generate before the

user applies any rejection in the UserAnalysis function. To run in verbose mode

you can compile with the following flag (first line cleans the compilation)

$ make clean

$ make MODE=-DVERBOSE
Then run

$./ScannerS

Since the program attempts various points before accepting a valid one, the output

contain several summaries for each attempted point. Focusing on the last one

**

**

******** SUMMARY INFO FOR THIS ATTEMPTED POINT *********

**

**

...
we find first information on the basis of states that was used to decompose the scalar

states into physical states2

--- New basis ----

--- Blocks which will mix ---

*** Block 0

v[0]= 0.000000e+00 dphi0 + 0.000000e+00 dphi1 + 9.893147e-01 dphi2

+ 0.000000e+00 dphi3 + 0.000000e+00 dphi4 + 0.000000e+00 dphi5 +

-1.457960e-01 dphi6 + 0.000000e+00 dphi7 +

v[1]= ...

--- Non-degenerate Curved diagonal directions ---

v[2]= ...

--- degenerate Curved diagonal directions ---

*** Group 0

v[3]= ...

v[4]= ...

2We shown here the full numerical decomposition only for the first vector for brevity.

– 6 –

--- Goldstone directions ---

v[5]= ...

v[6]= ...

v[7]= ...

where the first block contains the two CP even Higgses (h,H), then we have the CP

odd A, two real degenerate degrees of freedom which correspond to the charged Higgs

H±, and finally the three goldstones. The program always orders the states in this

way, i.e. first mixing blocks, then non-degenerate eigen-states, degenerate eigenstates

and at last massless states.

Next, there is some information on which parameters were left as independent

--- Independent parameters generated after VEVs and Mixings ---

Coupling 7 is independent.

Mass of state 0 is independent.

Mass of state 1 is independent.

Mass of state 2 is independent.

Mass of state 4 is independent.

--- Mixing matrix ----

...

and as expected there are 4 masses (for h,H,A,H±) and a free coupling (m2
12 in this

example). The convention is that: i) the program always tries to leave as many phys-

ical masses as possible as independent (to be scanned over) ii) the leftover couplings

that are left independent are the last ones in the numbering scheme entered in the

expression provided in the Mathematica file ScannerSInput.nb. Thus the user can

change which coupling is left as independent by changing the numbering.

Finally, note that VEVs and mixings are always scanner over, so they are independent

parameters are well.

For this point we have also

------ Masses --------

M[0]=1.250000e+02

M[1]=2.425054e+02

M[2]=1.453113e+02

M[3]=2.601380e+02

M[4]=2.601380e+02

M[5]=0.000000e+00

– 7 –

M[6]=0.000000e+00

M[7]=0.000000e+00

------ Couplings -----

L[0]=-1.430257e+04

L[1]=2.420284e+04

L[2]=-2.252956e-01

L[3]=6.395826e-01

L[4]=6.437778e+00

L[5]=8.029378e-01

L[6]=-1.763944e+00

L[7]=2.035475e+03

-------- VEVs --------

Phi[0]=0.000000e+00

Phi[1]=0.000000e+00

Phi[2]=2.358903e+02

Phi[3]=0.000000e+00

Phi[4]=0.000000e+00

Phi[5]=0.000000e+00

Phi[6]=6.979807e+01

Phi[7]=0.000000e+00

2 Step by step to model/analysis implementation

In this section we describe some further details of how the various parts of the user-defined

code works.

2.1 Inserting the model in Mathematica – ScannerSInput.nb

As explained in the previous section, the potential for the model is introduced in the Math-

ematica input file, ScannerSInput.nb. Following the notation of the code, an arbitrary

potential Vscalar is a real function which can always be written in terms of a number

Nscalar of canonically normalised fields φ[i], as a linear form over a set of Ncoup real

couplings L[a], i.e.

Vscalar =

Ncoup-1∑
a=0

V (φ)aL[a] . (2.1)

The current version of the code assumes that V (φ)a are polynomials in the fields of order

up to 4, i.e. a tree level renormalisable potential. Thus the user must enter an expression

which evaluates (up to constant numerical factors) to an expression in these two sets of

quantities, (L[a],φ[i]), only. The dimensions Nscalar and Ncoup must be set in the

beginning of the notebook.

– 8 –

Variable Description Remarks

Nreal Number of (real) scalar degrees of

freedom/fields (φ[i]).

A decomposition into

canonically normalised

real scalar fields is al-

ways possible.

Ncoup Number of (real) couplings (L[a]). A (linear) decomposi-

tion into real couplings

is always possible.

Vscalar Expression for the scalar potential

in terms of φ[i] and L[a].

φMin[i], φMax[i]

i = 0, ..., Nreal-1

Ranges for the scan over VEV of

field φ[i].

These are overridden if

NparamsVEVs> 0.

LMin[a], LMax[a]

a = 0, ..., Ncoup-1

Allowed ranges for the scan over

couplings L[a].

massMin[k],

massMax[k]

k = 0, ..., Nreal-1

Allowed ranges for the scan over

masses of the physical states.

NparamsVEVs Number of parameters used in the

parametrisation of the VEVs.

OPTIONAL – set to 0,

to turn off.

φParMin[j],

φParMax[j]

j = 0, ..., NparamsVEVs-1

Ranges for the scan over the pa-

rameters φPar[j] used in the

reparametrisation of the VEVs.

OPTIONAL – used if

NparamsVEVs > 0.

NparamsMix Number of parameters used in the

parametrisation of the mixing ma-

trix.

OPTIONAL – set to 0,

to turn off.

MixParMin[j],

φMixParMax[j]

j = 0, ..., NparamsMix-1

Ranges for the scan over the pa-

rameters MixPar[j] used in the

parametrisation of the mixing ma-

trix.

OPTIONAL – used if

NparamsMix > 0.

NparamsML Number of parameters used in the

parametrisation to impose extra

conditions at the last stages of the

scan.

OPTIONAL – set to 0,

to turn off.

MLParMin[j],

φMLParMax[j]

j = 0, ..., NparamsML-1

Ranges for the scan over the pa-

rameters MLPar[j] used in the

parametrisation of the extra con-

ditions.

OPTIONAL – used if

NparamsML > 0.

InputFileName Name of the input file generated

by the notebook.

Default is model.in.

Table 1. List of variables defining the run parameters in ScannerSInput.nb.

– 9 –

Furthermore, there are several switches that must be set so that the code knows the

ranges of the scan and the options available. A full summary of all options available (to

be discussed in the next paragraphs) is in Table 1.

Scan boxes for fields, couplings and physical masses: There are several variables

available to set the minimum and maximum ranges for the quantities being scanned over.

The recommended strategy in doing is as follows.

For field vacuum expectation values (VEVs):

1. The maximum and minimum range for fields that do not get a VEV must be set to

zero. In particular it is always safer to start by setting all ranges to zero and then

set the ranges that are non zero. For example:

(* Initialising all ranges to zero *)

For[i = 0, i < Nreal, ++i,

φMin[i] = 0;

φMax[i] = 0;

]

2. Then, the non-trivial ranges are set as follows (for example)

φMin[0] = 246;

φMax[0] = 246;

φMin[1] = 0;

φMax[1] = 500;

where we have set the first VEV to be fixed (but non-zero) and the second to be

scanned in the interval φ[1] ∈ [0, 500]. For other cases where a parametrisation is

necessary (such as the 2HDM) see the next paragraph.

For the parameters L[a] of the potential, and the physical state masses mass[i] a similar

strategy applies to the corresponding ranges LMin[a], massMin[i], etc... (see Table. 1).

Scan boxes for other parameters: In addition, there are 3 sets of optional parameters

which are associated with three types of re-parametrisations. Their role is to add flexibility

so that the user is able to scan the parameters not necessarily on a hypercubic boxes, but

on more generic slices/volumes in the parameter space. These are discussed in detail in

Sec. 2.2.3 (see also Table 1 for a short description).

2.2 Defining the analysis –ScannerSUser.cpp

After the Mathematica notebook ScannerSInput.nb, has been executed to generate the in-

put file, the use must define the analysis he/she wishes to run, in the file ScannerSUser.cpp.

This file is simply a set of template functions (i.e. that are defined by the user) which are

– 10 –

called before, during and after the scan. All other operations that are not defined in this

file are performed automatically by the code to generate a valid local minimum3.

The various template functions are discussed in the following sections.

2.2.1 User analysis functions

The first three functions are responsible for various user analysis tasks. They are:

1. UserInitCalcs: The function looks like

void UserInitCalcs(void){

///

//ENTER HERE CODE FOR YOUR INITIAL CALCULATIONS BEFORE THE SCAN STARTS

///

}

so it is empty by default. The user can enter here initial calculations/operations that

are done (only once) before the scan starts. For example, the user may want to create

a table of values to be used in the rejection/acceptance step during the scan, or write

some headers in the output file using std::cout<<....

2. UserAnalysis: This is where the user writes the analysis done on each point that is

generated in the scan. The general structure looks like

bool UserAnalysis(PhiRef & Phi,LambdaRef & L,MassRef & Mass,

MmixingRef & Mixing){

//

// ENTER CODE FOR YOUR TESTS/OUTPUT DURING THE SCAN //

//

if(_condition_)

return false;

...

//

////////// Final print out//////////////

//

std::cout<<...

...

return true;

}

3For each point in the scan the physical spectrum is automatically detected and tree level unitarity

constraints are applied for arbitrary models (see Sect. 2.2.4 for further details).

– 11 –

The main points to note are the following. First there is a first part where the user

is supposed to write conditions to be tested. If such conditions imply that the point

must be rejected then they must return false; otherwise the analysis of the point

continues. Then there is a print out part, where the user decides what gets printed

in the output file model.out if the point was accepted. The last line must always be

return true; so that the program accepts the point and moves on to generate the

next one, if all tests passed.

3. UserFinalCalcs: This is analogous to UserInitCalcs, except that it runs once after

the scan is done. This function looks like

void UserFinalCalcs(void){

//

//ENTER HERE CODE FOR YOUR FINAL CALCULATIONS AFTER THE SCAN IS DONE

//

}

2.2.2 Global stability and boundedness from below

Two theoretical constraints that are not yet implemented for general models in the code

are the global minimum condition (i.e. that the minimum that was generated locally is

actually the absolute minimum) and the boundedness from below condition (i.e. that the

potential does not have runaway directions). For this purpose there are two (user defined)

template functions, where the user can add any expression/procedure to test these.

1. CheckStability: This function is supposed to contain the conditions that test

whether the potential is bounded from below. The basic code structure is

bool CheckStability(LambdaRef & L){

//This example is for the 2HDM

if(L[3]>0 && L[4]>0 && L[5]+sqrt(L[3]*L[4])>0 && L[5]+L[6]

-abs(L[2])+sqrt(L[3]*L[4])>0)

return true;

else

return false;

}
so the user can define any function that depends on the parameters of the potential.

2. CheckGlobal: Similarly this function contains conditions that test whether the min-

imum is global. The basic code structure is similar:

– 12 –

bool CheckGlobal(PhiRef & Phi,LambdaRef & L,Potential & V){

//This example is for the 2HDM

//// Compute discriminant D

double kd = pow((L[3]/L[4]),0.25);

double Disc=L[7]*(L[0]-kd*kd*L[1])*(Phi[6]/Phi[2]-kd);

if(Disc <= 0)

return false;//If condition not met, reject point

return true;

}

2.2.3 Other user defined options

Finally, the last three template functions in ScannerSUser.cpp add flexibility to allow for

more generic parametrisations of the scan. The first function is particularly important.

VEV scan re-parametrisation: An important feature for more advanced models, is

to be able to impose more generic symmetry breaking patterns where, for example, there

are relations among VEVs. Such an example is the 2HDM model, Eq. (1.1),(1.2), where

instead of having the two VEVs v1, v2 generated uniformly inside a square, one wants to

generate them on a circle with radius v = 246 (see Eq. (1.2)).

Thus, the program allows for the user to define a generic re-parametrisation of the

VEVs in the form

Phi[0] = f0(PhiPar[0],...,PhiPar[NparamsVEVs-1]) (2.2)

. . . = . . . (2.3)

Phi[Nreal-1] = fNreal-1(PhiPar[0],...,PhiPar[NparamsVEVs-1]) (2.4)

where the right hand side functions are defined in the function MyPhiParametrization

of the ScannerSAnalysis.cpp file. The ranges for the parameters PhiPar[0] are defined

in the notebook ScannerSInput.nb similarly to those for the couplings L[a],etc... (see

Table 1). For the 2HDM example, the code is simply (compare with Eq. (1.2))

void MyPhiParametrization(const PhiParamVec & PhiPar,PhiVec & Phi){

//////////////////////////

// Variables:

// PhiPar[] : Vector of VEV parameters

// Phi[] : Vector of VEVs

///////////////////////////

// Description:

//...

Phi[2]=246*cos(PhiPar[0]);

Phi[6]=246*sin(PhiPar[0]);

}

– 13 –

Note the great flexibility of this function since the user could have called any other expres-

sion/function on the right hand side.

Mixing matrix parametrisation: Regarding the mixing matrix, the code generates it

automatically regardless of any parametrisation. This is done by using a method which

generates rotation matrices uniformly with respect to the Haar measure. However, in many

models the user may want to use a specific parametrisation (say a set of angles). The code

allows this through a template function where an internal mixing matrix can be specified

generically in the form

MixInternal[i][j] = Fij(MixPar[k],Phi[k],PhiPar[k]) (2.5)

where one notes that this depends on a set of parameters MixPar[k], but it can also depend

on the VEVs or respective parametrisation. The structure of the function is for example

void MyInternalMixing(const PhiParamVec & PhiPar,const PhiVec & Phi,

MixingparamVec & MixPar,vector< vector<double> > & MixInternal,

RandGen & r){

// Here the parameter MixPar[] was chosen to actually depend on the

// VEV parameters PhiPar[0]. This is actually a decoupling limit

// relation for the 2HDM if one sets MixPar[0]=α and

// PhiPar[0]=β in the 2HDM

MixPar[0]=PhiPar[0]-acos(-1)/2e0;

//Mixing matrix parametrised by the α angle

MixInternal[0][0]=cos(MixPar[0]);

MixInternal[0][1]=-sin(MixPar[0]);

MixInternal[1][0]=sin(MixPar[0]);

MixInternal[1][1]=cos(MixPar[0]);

}

Imposing extra conditions: Finally there is a template function which allows for extra

conditions to be imposed among all parameters in the last stage of the generation of a

point. This function is MyCoupMassRelations. This capability is not so essential, so

further examples will be presented in future versions of this manual.

2.2.4 Automatic modules

A first description of the numerical strategy used for the automatic tasks of the code (to

generate a local minimum obeying tree level unitarity constraints), was provided in [1]. The

details of the method are not essential for a first use of the program so a full description

with examples will be presented in a future version of the manual.

3 Using the external interfaces

We provide several interfaces to external programs (or their library versions), which al-

low for the user to access capabilities of each program library within the analysis in

– 14 –

ScannerSUser.cpp. Nevertheless, most of these external codes are written in different

programming languages ranging from Fortran77/90 to C/C++. Thus the instructions be-

low should be followed carefully for each specific interface. For almost all the interfaces,

there is a corresponding path variable in the editable header of the makefile which must

be defined to activate the interface, or left empty4 to de-activate it.

3.1 SuperIso (tested with v3.3)

The SuperIso library [2] is linked directly to the ScannerS code, so all SuperIso func-

tions can be called directly in the code. The interface is done through a SLHA file which

is created to pass as an argument to the SuperIso functions in the analysis. Currently

there is a function to make this automatic for the 2HDM model (instructions below).

The steps to use the interface are:

1. Specify the path to the SuperIso source files in the makefile, i.e. in the following

line (to de-activate the interface leave this empty with NO white space):

SuperisoPath=<Path to directory here>

2. Edit your ScannerSUser.cpp analysis file at the line where you want to call SuperIso

and write the following lines:

(a) Create the tempsuperiso.lha file – Write a line to call a function which

creates the file tempsuperiso.lha in your ScannerS working directory. For

the 2HDM there is a special function already defined to make this easier

void CreateInputFileSuperiso2HDM(double mHlight,double mHheavy,

double mA,double mHcharged,double alpha,double tanbeta,

int ModelType);

Alternatively you can define your own function to create the tempsuperiso.lha

file. All variable names follow the usual conventions for the 2HDM including

the ModelType variable (= 1, 2, 3 or 4), which defines the Yukawa type as in

SuperIso.

(b) Call a SuperIso function – Write a line to compute a specific observable

that you wish to use. Call the corresponding SuperIso function as usual by

passing the filename (see superiso manual [2]). ScannerS already contains an

internal static variable to pass the file name, superisofile, which holds the

name tempsuperiso.lha). For example to compute the B → Xsγ branching

ratio one calls

bsgamma_calculator(superisofile);

3.2 HiggsBounds/Signals

(UNDER TESTING!)

Both HiggsBounds and HiggsSignals can be linked by indicating the correct path to the

4With no white space – hit enter to ensure this, i.e. by creating a newline after the = symbol.

– 15 –

library in the makefile (if not in the standard search paths). All functions are available to

be called (check declarations in ScannerScore/HBWrap.h and ScannerScore/HSWrap.h).

Note however that the output hasn’t yet been tested extesnsively, so use it at your own

risk.

3.3 SusHi (tested with v1.1.0)

Currently there is an interface to the SusHi cross section calculator [3], to extract the Higgs

production cross section at NNLO in the gluon fusion and bb̄ channels. In the analysis,

the user has to call a function to create a sushi input file tempsushi.in. There is a

special function already defined for the 2HDM model (instructions below), however users

can define their own function to create the file.

The steps to use the interface are:

1. Specify the path to the SusHi source files in the makefile, i.e. in the following line

(to de-activate the interface leave this empty with NO white space):

SusHiPath=<Path to directory here>

2. Edit your ScannerSUser.cpp analysis file at the line where you want to call SusHi

and write the following lines:

(a) Create the tempsushi.in file – Write a line to call a function which creates

the file tempsushi.in in your ScannerS working directory. For the SM and

the 2HDM there are special functions already defined to make this easier

void CreateInputFileSusHi2HDM(int particle,int pp_ppbar,int order,

double CM_energy,double mHlight,double mHheavy,double mA,

double mHcharged,double alpha,double tanbeta,int ModelType);

void CreateInputFileSusHiSM(int pp_ppbar,int order,

double CM_energy,double mHiggs);

The variables particle, pp ppbar, order, CM energy follow the SusHi num-

bering (see examples in the ScannerS distribution). All other variable names

follow the usual conventions for the 2HDM, except for the ModelType variable

(= 1, 2, 3 or 4) where the 3 and 4 types are swapped (3 means the X-type, i.e.

lepton specific, and 4 is the Y-type, flipped).

Alternatively you can define your own function to create the tempsushi.in file.

(b) Call of SusHi – Write a line to call SusHi by using the following external

fortran function directly in the C++ analysis code in the following way

sushixsection_(xsecggh_out,errxsecggh_out,xsecbbh_out,errxsecbbh_out);

where all arguments are double precision output variables passed by reference

(i.e. where the output is written), and correspond to the gluon fusion cross

section and error, and bb̄ cross section and error.

– 16 –

3.4 Hdecay (tested with v6.0.0)

Currently there is a direct interface to the Hdecay calculator [4], for the 2HDM model,

with two specific functions to be used in the user analysis (instructions below). However, if

the user provides functions to create the hdecay.in input file and to read the output files

created by Hdecay, the interface can be still used for other models, since there is a C++

function

void HdecayCalc(void);

which can be called to run Hdecay directly in the ScannerSUser.cpp analysis file.

The steps to use the interface are:

1. Specify the path to the Hdecay source files in the makefile, i.e. in the following line

(to de-activate the interface leave this empty with NO white space):

Hdecaypath=<Path to directory here>

2. Edit your ScannerSUser.cpp analysis file at the line where you want to call Hdecay

and write the following lines:

(a) Create the hdecay.in file – Write a line calling a function which creates the

file hdecay.in in your ScannerS working directory. For the 2HDM there is a

special function already defined

void CreateInputFileHdecay2HDM(int Type,double tanbeta,

double alpha,double mHlight,double mHheavy,double mA,

double mCharged,double m12sq);

Alternatively you can define your own function to create the hdecay.in file.

(b) Run Hdecay – For the 2HDM model there is a special function for this step,

which stores all branching ratios and decay widths in a map in memory (for easy

access in the code – see full list in appendix A). This function must be called

exactly as in the following line:

HdecayCalc2HDM(HdecayA,HdecayHlight,HdecayHheavy,HdecayHcharged);

Alternatively, you can call the following generic function to run Hdecay, which

only creates the usual Hdecay output files:

void HdecayCalc(void);

In this case, you will have to write your own functions to read the output from

the files created by Hdecay (Note: further interface functions to ease this step

will be provided in future ScannerS releases).

(c) Access the Hdecay output – For the 2HDM model this is done directly by

using the map variables that were populated by HdecayCalc2HDM. For example

the branching ratio for the decay A→ bb̄ is accessed through

HdecayA["BR(A -> b bbar)"]

The full list of variables for the 2HDM is in appendix A.

– 17 –

3.5 Micromegas (tested with v2.4.5.)

The MicrOmegas interface works a bit differently from the other interfaces, because the

ScannerS code must be placed inside a MicrOmegas project directory. Before running

MicrOmegas with ScannerS, you will need to prepare the MicrOmegas project direc-

tory for your specific model (see [5]) and then place the ScannerS code inside. Note that

all MicrOmegas functions can be called directly in the ScannerS code as you would in

a MicrOmegas project.

The steps to use the interface are:

1. Create a new project in the MicrOmegas installation directory and check the model

(follow instructions in lapth.cnrs.fr/micromegas/).

2. Drop your ScannerS user files, makefile and the source directory (ScannerScore)

in the newly created MicrOmegas project directory (basically all contents of a

typical ScannerS project). Only after this step will you be able to compile the code

since the makefile links MicrOmegas sources which are assumed to be one directory

up.

3. Activate the MicrOmegas interface in the makefile by editing the following line

(otherwise to de-activate leave this empty with NO white space)

MicromegasOn==ON

4. Edit your ScannerSUser.cpp analysis file at the line where you want to call Mi-

crOmegas. A typical call involves (check examples):

(a) Setting values of model variables – The first step in the analysis is to pass

the values of the model parameters for the current parameter space pointm, to

MicrOmegas. Let’s say that, for example, you have implemented a 2HDM

inert model with dark matter, and that you have named the masses of the

light, heavy, CP odd and charged Higgses in the MicrOmegas project as

Mh,MHH,MAs,MHc and m2
12 as m12sqr, etc... Then you would pass using the

MicrOmegas assignVal function

assignVal("Mh",mHlight);

assignVal("MHH",mHheavy);

assignVal("MAs",mA);

assignVal("MHc",mHcharged);

assignVal("m12sqr",L[7]);

...

(b) Perform MicrOmegas calculations– Now that the model parameters are set

you can call any function which computes MicrOmegas quantities. For ex-

ample to compute the dark matter relic density you could use a piece of code

like:

– 18 –

lapth.cnrs.fr/micromegas/

char cdmName[10];

int err=sortOddParticles(cdmName);

if(err) { cerr<<"Can’t calculate "<<cdmName<< endl; exit(-1);}

///// Compute dark matter contributions from dark matter particle

double Omega,Xf,cut=0.01,Beps=1e-5;

Omega=darkOmega(&Xf,1,1e-5);

For further details check the ScannerS examples and the MicrOmegas man-

ual.

A List of map variables for the Hdecay interface

The special function for the 2HDM file populates the following list of map variables which

can be accessed by typing exactly as below 5:

HdecayA["BR(A -> b bbar)"]

HdecayA["BR(A -> tau+ tau-)"]

HdecayA["BR(A -> mu+ mu-)"]

HdecayA["BR(A -> s sbar)"]

HdecayA["BR(A -> c cbar)"]

HdecayA["BR(A -> t tbar)"]

HdecayA["BR(A -> g g)"]

HdecayA["BR(A -> gamma gamma)"]

HdecayA["BR(A -> Z gamma)"]

HdecayA["BR(A -> Z h)"]

HdecayA["BR(A -> A Z)"]

HdecayA["BR(A -> A W+ H-)"]

HdecayA["Width"]

5The string arguments which describe each decay should be self explanatory

– 19 –

HdecayHlight["BR(h -> b bbar)"]

HdecayHlight["BR(h -> tau+ tau-)"]

HdecayHlight["BR(h -> mu+ mu-)"]

HdecayHlight["BR(h -> s sbar)"]

HdecayHlight["BR(h -> c cbar)"]

HdecayHlight["BR(h -> t tbar)"]

HdecayHlight["BR(h -> g g)"]

HdecayHlight["BR(h -> gamma gamma)"]

HdecayHlight["BR(h -> Z gamma)"]

HdecayHlight["BR(h -> W+ W-)"]

HdecayHlight["BR(h -> Z Z)"]

HdecayHlight["BR(h -> A A)"]

HdecayHlight["BR(h -> Z A)"]

HdecayHlight["BR(h -> H+ H-)"]

HdecayHlight["BR(h -> W+ H-)+BR(h -> W- H+)"]

HdecayHlight["Width"]

HdecayHheavy["BR(H -> b bbar)"]

HdecayHheavy["BR(H -> tau+ tau-)"]

HdecayHheavy["BR(H -> mu+ mu-)"]

HdecayHheavy["BR(H -> s sbar)"]

HdecayHheavy["BR(H -> c cbar)"]

HdecayHheavy["BR(H -> t tbar)"]

HdecayHheavy["BR(H -> g g)"]

HdecayHheavy["BR(H -> gamma gamma)"]

HdecayHheavy["BR(H -> Z gamma)"]

HdecayHheavy["BR(H -> W+ W-)"]

HdecayHheavy["BR(H -> Z Z)"]

HdecayHheavy["BR(H -> h h)"]

HdecayHheavy["BR(H -> A A)"]

HdecayHheavy["BR(H -> Z A)"]

HdecayHheavy["BR(H -> W+ H-)+BR(H -> W- H+)"]

HdecayHheavy["BR(H -> H+ H-)"]

HdecayHheavy["Width"]

– 20 –

HdecayHcharged["BR(H+ -> c bbar)"]

HdecayHcharged["BR(H+ -> tau+ nu_tau)"]

HdecayHcharged["BR(H+ -> mu+ nu_mu)"]

HdecayHcharged["BR(H+ -> u bbar)"]

HdecayHcharged["BR(H+ -> u sbar)"]

HdecayHcharged["BR(H+ -> c dbar)"]

HdecayHcharged["BR(H+ -> c sbar)"]

HdecayHcharged["BR(H+ -> t bbar)"]

HdecayHcharged["BR(H+ -> t sbar)"]

HdecayHcharged["BR(H+ -> t dbar)"]

HdecayHcharged["BR(H+ -> W+ h)"]

HdecayHcharged["BR(H+ -> W+ H)"]

HdecayHcharged["BR(H+ -> W+ A)"]

HdecayHcharged["Width"]

References

[1] R. Coimbra, M. O. Sampaio, and R. Santos, ScannerS: Constraining the phase diagram of a

complex scalar singlet at the LHC, Eur.Phys.J. C73 (2013) 2428, [arXiv:1301.2599].

[2] F. Mahmoudi, SuperIso v2.3: A Program for calculating flavor physics observables in

Supersymmetry, Comput.Phys.Commun. 180 (2009) 1579–1613, [arXiv:0808.3144].

http://superiso.in2p3.fr/.

[3] R. V. Harlander, S. Liebler, and H. Mantler, SusHi: A program for the calculation of Higgs

production in gluon fusion and bottom-quark annihilation in the Standard Model and the

MSSM, Computer Physics Communications 184 (2013) 1605–1617, [arXiv:1212.3249].

https://sushi.hepforge.org/.

[4] A. Djouadi, J. Kalinowski, and M. Spira, HDECAY: A Program for Higgs boson decays in the

standard model and its supersymmetric extension, Comput.Phys.Commun. 108 (1998) 56–74,

[hep-ph/9704448]. http://people.web.psi.ch/spira/hdecay/.

[5] G. Belanger, F. Boudjema, and A. Pukhov, micrOMEGAs : a code for the calculation of Dark

Matter properties in generic models of particle interaction, arXiv:1402.0787.

https://lapth.cnrs.fr/micromegas/.

– 21 –

http://arxiv.org/abs/1301.2599
http://arxiv.org/abs/0808.3144
http://arxiv.org/abs/1212.3249
http://arxiv.org/abs/hep-ph/9704448
http://arxiv.org/abs/1402.0787

	Getting started
	Minimal requirements
	Quick Start: A 2HDM scan

	Step by step to model/analysis implementation
	Inserting the model in Mathematica – ScannerSInput.nb
	Defining the analysis –ScannerSUser.cpp
	User analysis functions
	Global stability and boundedness from below
	Other user defined options
	Automatic modules

	Using the external interfaces
	SuperIso (tested with v3.3)
	HiggsBounds/Signals
	SusHi (tested with v1.1.0)
	Hdecay (tested with v6.0.0)
	Micromegas (tested with v2.4.5.)

	List of map variables for the Hdecay interface

