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This is a short documentation of the MixingParameterTools add-on for
Mathematica. We describe the functions which allow to extract the mix-
ing parameters from mass and Yukawa matrices in some detail, and briefly
explain our conventions. There is also some information concerning the in-
stallation.
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1. Short description and comments

This is the documentation of the MixingParametersTools add-on which contains
the MPT3x3.m package. It provides various tools allowing for the extraction of physical
parameters from mass and Yukawa matrices.
This package comes along with the paper hep-ph/0501272.

2. Installation

2.1. Automatic installation (UNIX/Linux only)

Execute MixingParameterTools.installer and you are done.

sh MixingParameterTools.installer

The package is copied to ~/.Mathematica/Applications/MixingParameterTools. The
documentation and an example notebook are placed in a subdirectory of the working
directory, which is called MixingParameterTools.

2.2. Semi-automatic installation (UNIX/Linux only)

Unpack the archive MixingParameterTools.tar.gz.

tar -xvzf MixingParameterTools.tar.gz

Then go to the directory MixingParameterToolsInstall and execute the script install.sh.

cd MixingParameterToolsInstall

./install.sh

This copies the package to ~/.Mathematica/Applications/MixingParameterTools.
The documentation and an example notebook are placed in a new subdirectory of the
working directory called MixingParameterTools. Hence, the folder MixingParameter-
ToolsInstall can be deleted now.

2.3. Installation by hand

In order to install the package manually, the archive MixingParameterTools.tar.gz has
to be unpacked first. Under UNIX/Linux, type

tar -xvzf MixingParameterTools.tar.gz

On Windows systems, a program like WinZip can be used. Then one has to move the
directory MixingParameterTools from the folder MixingParameterToolsInstall to the
directory where the Mathematica add-ons are located, e.g.

http://arxiv.org/abs/hep-ph/0501272
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mv MixingParameterToolsInstall/MixingParameterTools \

~/.Mathematica/Applications/

Under Windows XP, the path to the add-on directory should be something like
Application Data\Mathematica\Applications. The documentation and an example
notebook can be found in
MixingParameterToolsInstall/Doc/MixingParameterTools/.
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3. Quick start

After installation, the only thing one has to do in order to have access to the functions
is to load the package:

Needs@"MixingParameterTools‘MPT3x3‘"D;

Let’s try if the package is really loaded. We can just ask Mathematica if it knows about
some functions, e.g.

? CKMParameters

CKMParameters@Yu,YdD returns the CKM mixing parameters 8Θ12,Θ13,

Θ23,∆< for up- and down-type Yukawa matrices Yu and Yd, as

well as the Yukawa couplings 8yu,yc,yt< and 8yd,ys,yb<.

If this works, Mathematica will return a short description of this command CKMParameters.
Now we can start playing. Just for fun, let us generate ‘predictions’ randomly, e.g. by

ClearAll@rndEntry, rndMatrixD;
rndEntry := Exp@Random@Complex, 8-6, 0.2 + 2 Π I<DD;

rndMatrix :=

i

k

jjjjjj

rndEntry rndEntry rndEntry

rndEntry rndEntry rndEntry

rndEntry rndEntry rndEntry

y

{

zzzzzz
;

Let’s see what the ‘prediction’ of the above ansatz is:

ClearAll@Yd, Yu, UCKMD;
Yd = rndMatrix;
Yu = rndMatrix;
UCKM = Catch@CKMMatrix@Yu, YdDD;
Print@"UCKM="D;
Print@MatrixForm@UCKMDD;

UCKM=

i

k

jjjjjjj

0.0334209 + 0.362879 ä -0.0692623 - 0.115267 ä 0.168338 + 0.905969 ä

-0.76602 - 0.522548 ä 0.0123705 + 0.0569267 ä 0.319403 + 0.186401 ä

-0.0728749 + 0.0452632 ä -0.923052 + 0.355664 ä -0.117296 - 0.0189635 ä

y

{

zzzzzzz

OK, this is a 3×3 matrix. Fine. But suppose we’re interested in the Cabbibo angle. Let
us try
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Print@"CKM parameters: ", Catch@CKMParameters@Yu, YdDDD;

CKM parameters: 880.353517, 1.17186, 1.25992, 0.189274<,
80.00327824, 0.544895, 0.564447<, 80.00586943, 0.0820568, 0.163917<<

This looks better. According to the above short description, the first list contains the
three angles and the Dirac phase, and the first entry of the first list is the Cabbibo angle.
Let’s see. . .

Print@"ΘCabbibo=", Catch@CKMParameters@Yu, YdDDP1, 1T � DegreeD;

ΘCabbibo=20.2551

All right, our texture is probably only semi-realistic.
Maybe we are more lucky with neutrinos.

ClearAll@Ye, tmpF, mD;
Ye = rndMatrix;
tmpF = rndMatrix;
m = tmpF + Transpose@tmpFD;
Print@"MNS parameters: ", Catch@MNSParameters@m, YeDDD;

MNS parameters: 880.3749, 0.128276, 0.231185,
0.328005, 1.15855, 1.38587, 0.986024, 1.26561, 3.53476<,
80.889961, 0.0452562, 1.89558<, 80.0429663, 0.143401, 0.236882<<

Now a strange thing happened. The entries of the second list, the neutrino mass eigen-
values, are not ordered ascendingly. This is because it always given in a form in which
it is easy to compare with experiments (cf. Sec. 5.2).
We could be especially interested in the solar mixing angle:

Print@"Θ12=", Catch@MNSParameters@m, YeDDP1, 1T � DegreeD

Θ12=21.4802

Well, also not too close to the central experimental value. Let’s try another texture. . .
At this point, we decide to leave the ‘quick start’ section, and turn to the description

of the functions.
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4. Description of the functions

MNSMatrix

MNSMatrix[m, Ye] returns the MNS matrix, i.e. the matrix UMNS which diagonalizes
the (neutrino mass) matrix m in the basis where the (charged lepton Yukawa cou-
pling) matrix Ye is diagonal. By convention, the parameters of UMNS fulfill 0 ≤ θ12 ≤
π/4, 0 ≤ θ13, θ23 ≤ π/2 and all other parameters range from 0 to 2π. It is possible
to fix the hierarchy to be normal or inverted by calling MNSMatrix[m, Ye,‘‘n’’] or
MNSMatrix[m, Ye,‘‘i’’], respectively. This option is useful if the hierarchy changes
due to RG evolution. Note that the input matrices m and Ye must be numeric.

MNSParameters

MNSParameters[m, Ye] returns the MNS mixing and mass parameters {{θ12, θ13, θ23, δ,
δe, δµ, δτ , ϕ1, ϕ2}, {m1, m2, m3}, {ye, yµ, yτ}} for a Majorana neutrino matrix m and a
Yukawa coupling matrix Ye. The returned parameters obey the conventions 0 ≤ θ12 ≤
π/4, 0 ≤ θ13, θ23 ≤ π/2 and all other parameters range from 0 to 2π. It is possible
to fix the hierarchy to be normal or inverted by calling MNSMatrix[m, Ye,‘‘n’’] or
MNSMatrix[m, Ye,‘‘i’’], respectively. Note that the input matrices m and Ye must be
numeric. Furthermore, if parameters are undefined, some viable choice is returned. For
instance, if θ13 = 0, the function returns δ = 0.

DiracMNSMatrix

DiracMNSMatrix[Yν , Ye] returns the MNS matrix for Dirac neutrinos with Yukawa
coupling Yν .

DiracMNSParameters

DiracMNSParameters[Yν , Ye] returns the MNS mixing parameters {θ12, θ13, θ23, δ},
{y1, y2, y3} (with yi = mi/v) and {ye, yµ, yτ} for neutrino and charged lepton Yukawa
matrices Yν and Ye. Note that these parameters are not sufficient to determine the
unitary matrix which diagonalizes Y †

ν Yν in the basis where Y †
e Ye is diagonal. The addi-

tional parameters, required to reconstruct UDirac
MNS , are unphysical. Note that the input

matrices Yν and Ye must be numeric. Furthermore, if parameters are undefined, some
viable choice is returned. For instance, if θ13 = 0, the function returns δ = 0.

CKMMatrix

CKMMatrix[Yu, Yd] returns the CKM matrix, i.e. the matrix UCKM which diagonalizes
the (down-type quark Yukawa) matrix Yd in the basis where the (up-type quark Yukawa)
matrix Yu is diagonal. Note that the input matrices Yu and Yd must be numeric.
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CKMParameters

CKMParameters[Yu , Yd] returns the CKM mixing parameters {θ12, θ13, θ23, δ}, as well
as the Yukawa couplings {yu, yc, yt} and {yd, ys, yb}, for up- and down-type Yukawa ma-
trices Yu and Yd. Note that these parameters are not sufficient to determine the unitary
matrix which diagonalizes Y †

d Yd in the basis where Y †
uYu is diagonal. The additional

parameters, required to reconstruct UCKM, are unphysical. Note that the input matrices
Yu and Yd must be numeric. Furthermore, if parameters are undefined, some viable
choice is returned. For instance, if θ13 = 0, the function returns δ = 0.

5. Remarks

5.1. Remarks on the calculation of the CKM matrix

The input parameters are the Yukawa couplings Y = (Yfg) (Yu and Yd) which are
defined via the Lagrangean

LYukawa = ψf
R Yfg ψ

g
L + h.c. , (5.1)

with R and L indicating right- and left-chiral fields, respectively. Y can always be
diagonalized by a bi-unitary transformation

ψR → U †
R ψR , (5.2a)

ψL → U †
L ψL , (5.2b)

Y → U †
R Y UL = diag(y1, y2, y3) , (5.2c)

with y1 ≤ y2 ≤ y3 being the ‘eigenvalues’ of Y . Here, UL and UR are defined (or: can be
computed) via

U †
L Y

† Y UL
!
= diag

(

|y1|
2, |y2|

2, |y3|
2
)

, (5.3a)

U †
R Y Y

† UR
!
= diag

(

|y1|
2, |y2|

2, |y3|
2
)

, (5.3b)

respectively. For most applications, UR is irrelevant.

The CKM matrix is calculated as follows:

(1) Switch to the basis where Yu is diagonal, i.e.

Yu → (U
(u)
R )† Yu U

(u)
L = diag(yu, yc, yt) , (5.4a)

Yd → (U
(u)
R )† Yd U

(u)
L =: Y ′

d . (5.4b)

(2) Calculate UL for Y ′
d . This is UCKM.
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5.2. Remarks on the calculation of the MNS matrix

For the MNS matrix, switch to the basis where Ye is diagonal,

Ye → U †
R Ye UL = diag(ye, yµ, yτ) , (5.5a)

mν → UT
L mν UL =: m′

ν . (5.5b)

The MNS matrix has to fulfill

UT
MNSm

′
ν UMNS = diag(m1, m2, m3) , (5.6)

where the mi are real and positive. However, this does not fix UMNS entirely. First of all,
there is the obvious ambiguity of ordering the mass eigenvalues mi. In order to obtain
a mixing matrix which can be compared with the experimental data, the choice of the
prescription is somewhat subtle. From experiment we know that there is a small mass
difference, called ∆m2

sol = m2
i −m2

j , and a larger one, referred to as ∆m2
atm = m2

k −m2
ℓ .

By convention, the masses are labeled such that i, j 6= 3 while either k or ℓ equals 3.
The mass label 2 is attached to the eigenvector with the lower modulus of the first
component. We are doing this since we want to read off a mixing angle θ12 less than
45◦. If it then turns out that m1 > m2, the corresponding mass matrix is most likely
not physical.

5.3. Definition and Extraction of Mixing Parameters

(i). Standard Parametrization

In this section we describe our conventions and how mixing angles and phases can
be extracted from mass matrices. For a general unitary matrix we choose the so-called
standard parametrization

U = diag(eiδe , eiδµ, eiδτ ) · V · diag(e−iϕ1/2, e−iϕ2/2, 1) =: Kδ · V ·Kϕ , (5.7)

where

V =





c12c13 s12c13 s13e
−iδ

−c23s12 − s23s13c12e
iδ c23c12 − s23s13s12e

iδ s23c13
s23s12 − c23s13c12e

iδ −s23c12 − c23s13s12e
iδ c23c13



 (5.8)

with cij and sij defined as cos θij and sin θij , respectively.

(ii). Extracting Mixing Angles and Phases

In the standard parametrization, the mixing angles θ13 and θ23 can be chosen to lie
between 0 and π

2
, and in the lepton sector by reordering the masses, θ12 can be restricted

to 0 ≤ θ12 ≤
π
4
. For the phases the range between 0 and 2π is required. In order to read

off the mixing parameters in the generic case, i.e. for none of the angles θij equal to 0
or π/2, we use the following procedure:

(1) θ13 = arcsin(|U13|).
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(2) θ12 =







arctan

(

|U12|

|U11|

)

if U11 6= 0

π
2

else

(3) θ23 =







arctan

(

|U23|

|U33|

)

if U33 6= 0

π
2

else

(4) δµ = arg(U23)

(5) δτ = arg(U33)

(6) δ = − arg









U∗
11U13U31U

∗
33

c12 c
2
13 c23 s13

+ c12 c23 s13

s12 s23









where i, j ∈ {1, 2, 3} and i 6= j.

(7) δe = arg(eiδ U13)

(8) ϕ1 = 2 arg(eiδe U∗
11)

(9) ϕ2 = 2 arg(eiδe U∗
12)

Here we used the relation1

U∗
11U13U31U

∗
33 = c12 c

2
13 c23 s13

(

e−iδ s12 s23 − c12 c23 s13
)

.

Note that this relation is often used in order to introduce the Jarlskog invariants

JCP =
1

2
|Im(U∗

11U12U21U
∗
22)| =

1

2
|Im(U∗

11U13U31U
∗
33)|

=
1

2
|Im(U∗

22U23U32U
∗
33)| =

1

2

∣

∣c12 c
2
13 c23 sin δ s12 s13 s23

∣

∣ . (5.9)

For the sake of a better numerical stability, one can choose any of the three combinations.
In particular, if the modulus of one of the Uij is very small, it turns out to be more
accurate to choose a combination in which this specific Uij does not appear.

5.4. Remarks on special (degenerate) cases

There are several cases where the mixing parameters are not uniquely defined, e.g.
when the eigenvalues are degenerate. The package tries to return one set of possible
mixing parameters then. In some cases, this is not successful, and an error message is
produced. We keep on improving on these cases. Let us, however, stress that for phe-
nomenologically viable mass matrices, and moderate deformations thereof, our functions
work without problems.

1There was an error in an earlier version of this relation. We are grateful to Yang Bai for pointing it

out to us.
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6. Trouble-Shooting

There may be bugs in the software. We will collect them on the web page

http://www.ph.tum.de/~rge/MPT/bugs.html .

In case you encounter a new bug, or if you have other suggestions, please write an email
to rge@ph.tum.de.

http://www.ph.tum.de/~rge/MPT/bugs.html


12 A THEOREMS ON MATRIX-DIAGONALIZATION

A. Theorems on Matrix-Diagonalization

Hermitean Matrices
A.1 Theorem:

Hermitean matrices M can be diagonalized by unitary transformations,

U †MU = diag(M1, . . . ,Mn) , (1.1)

where U is unitary and the eigenvalues Mi are real. The columns of U contain the

eigenvectors of M .

Proof. See the standard textbooks on linear algebra. �

General Matrices (Biunitary Diagonalization)

A.2 Theorem:

A general, non-singular matrix M can be diagonalized by a biunitary transformation,

U †
LMUR = diag(M1, . . . ,Mn) , (1.2)

if none of the eigenvalues of M †M equals zero. UL and UR are unitary, and Mi are

real and positive. The matrices UL and UR can be found by determining the unitary

transformations which diagonalize MM † and M †M , respectively, i.e.

U †
LMM † UL = diag(M2

1 , . . . ,M
2
n) , (1.3a)

U †
RM

†M UR = diag(M2
1 , . . . ,M

2
n) . (1.3b)

Proof. Define

H2 :=MM † , (1.4)

which is obviously Hermitean and can therefore be diagonalized by a unitary transfor-
mation,

U †
LMM † UL = diag(M2

1 , . . . ,M
2
n) =: D2 , (1.5)

where Mi are real and positive. Define D as the diagonal matrix containing the
square-roots of D2. Then obviously

H := ULDU
†
L (1.6)

satisfies equation (1.4). With V := H−1M , which is unitary because

V †V
H†=H
= M †H−1H−1M

(1.4)
= M †(MM †)−1M = 1 , (1.7)

we find

M = HV
(1.6)
= ULDU

†
R , (1.8)

where UR := V †UL is unitary, so that equation (1.2) is proven. Furthermore, UR

diagonalizes M †M , since

U †
RM

†MUR
(1.8)
= U †

R URDU
†
L ULDU

†
R UR = D2 , (1.9)

which proves equation (1.3b). �
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Symmetric Matrices

A.3 Theorem:

Complex symmetric matrices can be diagonalized by a unitary matrix U ,

UTMU = diag(M1, . . . ,Mn) := D , (1.10)

where

U †M †M U = D2 , (1.11)

i.e. the real numbers Mi are the square roots of the eigenvalues of M †M .

Proof. From theorem A.2 we know that

M = ULDU
†
R , (1.12)

where UL, UR and D are uniquely determined.2 As M is symmetric, it follows that

M =MT = U∗
RDU

T
L . (1.13)

On the other hand, we can view the last equation as the diagonalization of MT ,
which is uniquely determined as well according to theorem A.2. Hence, we conclude
UL = U∗

R, which completes the proof if we set U := UR and take into account equa-
tion (1.3b). �

2Note that UL, UR are not always unique: If the eigenvalues of D are degenerate, there exist matrices

U which diagonalize M
†
M , i.e. U

†
M

†
M U = D, which however do not diagonalize M . In this

case, M can still be diagonalized, but the matrix which does the job can not simply be obtained by

calculating the eigenvectors of M †
M .
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