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1 Brief Introduction
This short summary provides the most important points to understand in order to
parametrize the QMCUncertaintyCalculator and cone classes (quasi-Monte Carlo error
estimation in the MCuncert package). The information is directly extracted from the
article Reliable Adaptive Cubature Using Digital Sequences. For a more detailed
explanation, the reader can find the article in http://arxiv.org/abs/1410.8615.

1.1 Digital Nets
Digital sequences are defined in terms of digitwise addition. Let b be a prime number;
b = 2 is the choice made for Sobol’ sequences. Digitwise addition, ⊕, and negation, 	,
are defined in terms of the proper b-ary expansions of points in [0,1)d :

xxx =

(
∞

∑
`=1

x j`b−`
)d

j=1

, ttt =

(
∞

∑
`=1

t j`b−`
)d

j=1

, x j`, t j` ∈ Fb := {0, . . . ,b−1},

xxx⊕ ttt =

(
∞

∑
`=1

[(x j`+ t j`) mod b]b−` (mod 1)

)d

j=1

, xxx	 ttt := xxx⊕ (	ttt),

	xxx =

(
∞

∑
`=1

[−x j` mod b]b−`
)d

j=1

, axxx := xxx⊕·· ·⊕ xxx︸ ︷︷ ︸
a times

∀a ∈ Fb.

We do not have associativity for all of [0,1)d . For example, for b = 2,

1/6 = 20.001010 . . . , 1/3 = 20.010101 . . . , 1/2 = 20.1000 . . .
1/3⊕1/3 = 20.00000 . . .= 0, 1/3⊕1/6 = 20.011111 . . .= 1/2,

(1/3⊕1/3)⊕1/6 = 0⊕1/6 = 1/6, 1/3⊕ (1/3⊕1/6) = 1/3⊕1/2 = 5/6.

This lack of associativity comes from the possibility of digitwise addition resulting in
an infinite trail of digits b−1, e.g., 1/3⊕1/6 above.
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1.2 Wavenumber Space
Non-negative integer vectors are used to index the Walsh series for the integrands. The
set Nd

0 is a vector space under digitwise addition, ⊕, and the field Fb := {0, . . . ,b−1}.
Digitwise addition and negation are defined as follows for all kkk, lll ∈ Nd

0 :

kkk =

(
∞

∑
`=0

k j`b`
)d

j=1

, lll =

(
∞

∑
`=0

l j`b`
)d

j=1

, k j`, l j` ∈ Fb,

kkk⊕ lll =

(
∞

∑
`=0

[(k j`+ l j`) mod b]b`
)d

j=1

,

	kkk =

(
∞

∑
`=0

(b− k j`)b`
)d

j=1

, akkk := kkk⊕·· ·⊕ kkk︸ ︷︷ ︸
a times

∀a ∈ Fb.

For each wavenumber kkk ∈ Nd
0 a function 〈kkk, ·〉 : [0,1)d → Fb is defined as

〈kkk,xxx〉 :=
d

∑
j=1

∞

∑
`=0

k j`x j,`+1 (mod b). (1)

1.3 Walsh Series
The Walsh functions {exp(2π

√
−1〈kkk, ·〉 /b) : kkk ∈Nd

0} are a complete orthonormal basis
for L2([0,1)d). Thus, any function in L2 may be written in series form as

f (xxx) = ∑
kkk∈Nd

0

f̂ (kkk)e2π
√
−1〈kkk,xxx〉/b, where f̂ (kkk) :=

〈
f , e2π

√
−1〈kkk,·〉/b

〉
2
, (2)

and the L2 inner product of two functions is the `2 inner product of their Walsh series
coefficients:

〈 f ,g〉2 = ∑
kkk∈Nd

0

f̂ (kkk)ĝ(kkk) =:
〈(

f̂ (kkk)
)

kkk∈Nd
0
,
(
ĝ(kkk)

)
kkk∈Nd

0

〉
2
.

Because in the algorithm we do not assume the knowledge of the Walsh coefficients,
we will also define the discrete/approximated coefficients as

f̃m(kkk) :=
1

bm

bm−1

∑
i=0

f (zzzi)e−2π
√
−1〈kkk,zzzi〉/b, {zzzi}∞

i=0 the digital sequence. (3)

As described in the article http://arxiv.org/abs/1410.8615, the algorithm includes
a bijective mapping such that k̃kk : N0 → Nd

0 . Thus, we introduce the short notation
f̂κ := f̂ (k̃kk(κ)) and f̃m,κ := f̃m(k̃kk(κ)).
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2 Cone Definition and Parametrization

2.1 Sums of Walsh Series Coefficients and Cone Conditions
Consider the following sums of the true and approximate Walsh series coefficients. For
`,m ∈ N0 and `≤ m let

Sm( f ) =
bm−1

∑
κ=bbm−1c

∣∣ f̂κ

∣∣, Ŝ`,m( f ) =
b`−1

∑
κ=bb`−1c

∞

∑
λ=1

∣∣ f̂κ+λbm
∣∣,

qSm( f ) = Ŝ0,m( f )+ · · ·+ Ŝm,m( f ) =
∞

∑
κ=bm

∣∣ f̂κ

∣∣, S̃`,m( f ) =
b`−1

∑
κ=bb`−1c

∣∣ f̃m,κ

∣∣.
The first three sums, Sm( f ), Ŝ`,m( f ), and qSm( f ), cannot be observed because they
involve the true series coefficients. But, the last sum, S̃`,m( f ), is defined in terms of the
discrete Walsh transform and can easily be computed in terms of function values.

We make critical assumptions about how certain sums provide upper bounds on
others. Let `∗ ∈N (lstar in cone.hh) be some fixed integer and ω̂ (omghat in cone.hh) and
ω̊ (omgcirc in cone.hh) be some non-negative valued functions with limm→∞ ω̊(m) = 0
such that ω̂(r)ω̊(r)< 1 for some r ∈ N (rlag in cone.hh). Define the cone of integrands

C := { f ∈ L2([0,1)d) : Ŝ`,m( f )≤ ω̂(m− `)qSm( f ), `≤ m,

qSm( f )≤ ω̊(m− `)S`( f ), `∗ ≤ `≤ m}. (4)

The first inequality asserts that the sum of the larger indexed Walsh coefficients
bounds a partial sum of the same coefficients. For example, this means that Ŝ0,12, the
sum of the values of the large black dots in Figure 1, is no greater than some factor
times qS12( f ), the sum of the values of the gray ×××. Possible choices of ω̂ are ω̂(m) = 1
or ω̂(m) = βb−qm for some β > 1 and 0 ≤ q ≤ 1. The second inequality asserts that
the sum of the smaller indexed coefficients provides an upper bound on the sum of the
larger indexed coefficients. In other words, the fine scale components of the integrand
are not unduly large compared to the gross scale components. In Figure 1 this means
that qS12( f ) is no greater than some factor times S8( f ), the sum of the values of the
black squares. This implies that

∣∣ f̂κ

∣∣ does not dip down and then bounce back up too
dramatically as κ → ∞. The reason for enforcing the second inequality only for `≥ `∗
is that for small `, one might have a coincidentally small S`( f ), while qSm( f ) is large.

The properties of any function in C lead to the following conservative upper bound
on the cubature error for `,m ∈ N, `∗ ≤ `≤ m:∣∣∣∣∫

[0,1)d
f (xxx) dxxx− 1

bm

bm−1

∑
i=0

f (zzzi)

∣∣∣∣≤ S̃`,m( f )ω̂(m)ω̊(m− `)

1− ω̂(m− `)ω̊(m− `)
. (5)

2.2 Algorithm
Given the parameter `∗ ∈ N and the functions ω̂ and ω̊ that define the cone C in (4),
choose the parameter r ∈ N such that ω̂(r)ω̊(r) < 1. Let C(m) := ω̂(m)ω̊(r)/[1−
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Figure 1: The magnitudes of true Walsh coefficients for f (x) = e−3x sin
(
10x2

)
.

ω̂(r)ω̊(r)] (cfrag in cone.hh) and m = `∗+ r. Given a tolerance, ε , and a routine that
produces values of the integrand, f , do the following:

Step 1. Compute the sum of the discrete Walsh coefficients, S̃m−r,m( f ).

Step 2. Check whether the error tolerance is met, i.e., whether C(m)S̃m−r,m( f )≤ ε . If
so, then return the cubature 1

bm ∑
bm−1
i=0 f (zzzi).

Step 3. Otherwise, increment m by one, and go to Step 1.

There is a balance to be struck in the choice of r. Choosing r too large causes the
error bound to depend on the Walsh coefficients with smaller indices, which may be
large, even though the Walsh coefficients determining the error are small. Choosing r
too large makes ω̂(r)ω̊(r) large, and thus the inflation factor, C, large to guard against
aliasing.

2.3 MCuncert Package and Relative Error
For practical purposes in the top quark mass measurement, the MCuncert package mea-
nUncertainty() method from the QMCUncertaintyCalculator class will return the esti-
mated relative error, or in other words, error bound

estimated mean =C(m)S̃m−r,m( f )/
(

1
bm ∑

bm−1
i=0 f (zzzi)

)
.
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