src/integral/three_point/function_3p0m [ Modules ]

[ Top ] [ Modules ]

NAME

  Module function_3p_finite

USAGE

  use function_3p_finite

DESCRIPTION

  This module is used to compute finite three-point functions
  with internal masses, called from LoopTools

OUTPUT

  This module exports two functions:
  * f3p_finite -- a function for the computation of the n-dim three- 
    point function with/without Feynman parameters
  * f3p_finite_np2 -- a function for the computation of the three- 
    point function with/without Feynman parameters in n+2 dimensions

USES

  * precision (src/module/precision.f90)
  * logarithme (src/module/z_log.f90)
  * func_h0 (src/integrals/three_point/mod_h0.f90)
  * func_he (src/integrals/three_point/mod_he.f90)
  * func_hf (src/integrals/three_point/mod_hf.f90)
  * sortie_erreur (src/module/sortie_erreur.f90)

src/integral/three_point/function_3p0m/f3p_finite [ Functions ]

[ Top ] [ Functions ]

NAME

  Function f3p_finite

USAGE

  real_dim6 = f3p_finite(s1,s2,s3,m1s,m2s,m3s,par1,par2,par3)

DESCRIPTION

  This function computes the finite three point function in n dimensions
  with up to three Feynman parameters in the numerator.
  It retuns an array of 6 reals corresponding to the real/imaginary
  part of the coefficient of the 1/epsilon^2 term, real/imaginary part of the
  coefficient of the 1/epsilon term and the real/imaginary part of the 
  constant term.

INPUTS

  * s1,s2,s3 -- real (type ki), the values of the external legs squared
  * m1s,m2s,m3s -- real (type ki), the values of the masses squared
  * par1 -- an integer, the label of the third Feynman parameter
  * par2 -- an integer, the label of the second Feynman parameter
  * par3 -- an integer, the label of the first Feynman parameter
  Note that par1,par2 and par3 are supposed to be ordered, i.e.
  par1 <= par2 <= par3, note also that put zero for par1, par2 or par3
  if this Feynman parameter does not exist.
  Use the routine tri_int(t_in,t_out) to order the labels in the module 
  tri_croissant (src/module/tri.f90)

SIDE EFFECTS

  No side effect

RETURN VALUE

  An real (type ki) array of rank 1 and shape 6 corresponding to 
  the real/imaginary part of the coefficient of the 1/epsilon^2 term,
  real/imaginary part of the coefficient of the 1/epsilon term
  and the real/imaginary part of the constant term.

EXAMPLE

 two mass three point function without Feynman parameters 
 f3p_finite(s1,s2,s3,m1s,m2s,m3s,0,0,0) 
 with one Feynman parameter in the numerator z_1 
 f3p_finite(s1,s2,s3,m1s,m2s,m3s,0,0,1)
 with three Feynman parameters in the numerator z_2^2 z_3
 f3p_finite(s1,s2,s3,m1s,m2s,m3s,2,2,3) 

src/integral/three_point/function_3p0m/f3p_finite_np2 [ Functions ]

[ Top ] [ Functions ]

NAME

  Function f3p_finite_np2

USAGE

  real_dim4 = f3p_finite_np2(s1,s2,s3,m1s,m2s,m3s,par1,par2,par3)

DESCRIPTION

  This function computes the finite 3-point function in n+2 dimensions. 
  with up to one Feynman parameter in the numerator.
  It retuns an array of 4 reals corresponding to the real/imaginary part of the
  coefficient of the 1/epsilon term and the real/imaginary part of the 
  constant term.

INPUTS

  * s1,s2,s3 -- real (type ki), the values of the external legs p_i^2
  * m1s,m2s,m3s -- real (type ki), the value of the internal masses^2
  * par1 -- an integer, the label of the third Feynman parameter = 0
  * par2 -- an integer, the label of the second Feynman parameter = 0
  * par3 -- an integer, the label of the first Feynman parameter
  Note that par1,par2 and par3 are supposed to be ordered, i.e.
  par1 <= par2 <= par3, note also that put zero for par1, par2 or par3
  if this Feynman parameter does not exist.
  Use the routine tri_int(t_in,t_out) to order the labels in the module 
  tri_croissant (src/module/tri.f90)

SIDE EFFECTS

  No side effect

RETURN VALUE

  An real (type ki) array of rank 1 and shape 4 corresponding to 
  the real/imaginary part of the coefficient of the 1/epsilon term
  and the real/imaginary part of the constant term. If par1 and/or par2
  are different from zero, an error is returned.

EXAMPLE

 two mass three point function without Feynman parameters 
 f3p_finite_np2(s1,s2,s3,m1s,m2s,m3s,0,0,0) 
 with one Feynman parameter at the numerator z_1 
 f3p_finite_np2(s1,s2,s3,m1s,m2s,m3s,0,0,1)