src/integrals/three_point/func_hf [ Modules ]

[ Top ] [ Modules ]

NAME

  Module func_hf

USAGE

  use func_hf

DESCRIPTION

  This module contains several functions for the computation of
  int^1_0 dy y^n*ln(y*z1+(1-y)*z3)/(y*z1+(1-y)*z3) where z1 and 
  z3 are complex numbers

OUTPUT

  This modules exports three functions:
  * hf -- a function
  * hf_gen -- a function
  * hf_c -- a function

USES

  * precision (src/module/preci_double.f90)
  * numerical_evaluation (src/numerical/mod_numeric.f90)
  * sortie_erreur (src/module/sortie_erreur.f90)
  * parametre (src/module/parametre.f90)
  * logarithme (src/module/z_log.f90)
  * constante (src/module/constante.f90)
  * more_integ_info (src/module/more_integ_info.f90)

src/integrals/three_point/func_hf/hf [ Functions ]

[ Top ] [ Functions ]

NAME

  Function hf

USAGE

  real_dim2 = hf(n,a1,a3)

DESCRIPTION

  This function computes:
  int^1_0 dy y^(n-1)*ln(y*z1+(1-y)*z3)/(y*z1+(1-y)*z3)
  where z1 = a1 + i b1 and z3 = a3 + i b3
  For n=1, it is equal to: (ln^2(z1)-ln^2(z3))/(z1-z3)
  compatible with the definition of HnF
  It switches to numerical evaluation if 
  |a1-a3|/max(|a1|,|a3|) < coupure_3p2m

INPUTS

  * n -- an integer, the power of y in the integrand
  * a1 -- a real (type ki), the real part of z1 (time -1)
  * a3 -- a real (type ki), the real part of z3 (time -1)

SIDE EFFECTS

  No side effect, the returned value depends on the global variables
  rat_or_tot_par, coupure_3p2m

RETURN VALUE

  It returns a real (type ki) array of rank 1 and shape 2

EXAMPLE


src/integrals/three_point/func_hf/hf_c [ Functions ]

[ Top ] [ Functions ]

NAME

  Function hf_c

USAGE

  complex = hf_c(n,a1,a3)

DESCRIPTION

 This function computes the same thing as hf
 but it returns a complex instead of a real array of rank 1 and shape 2

INPUTS

  * n -- an integer, the power of y in the integrand
  * a1 -- a real (type ki), the real part of z1 (time -1)
  * a3 -- a real (type ki), the real part of z3 (time -1)

SIDE EFFECTS

  No side effect

RETURN VALUE

  It returns a complex (type ki)

EXAMPLE