
Eur. Phys. J. C manuscript No.
(will be inserted by the editor)

Comparison of statistical sampling methods with ScannerBit,
the GAMBIT scanning module

The GAMBIT Scanner Workgroup: Gregory D. Martinez1,a, James
McKay2,b, Ben Farmer3,4,c, Pat Scott2,d, Elinore Roebber5, Antje Putze6,
Jan Conrad3,4

1Physics and Astronomy Department, University of California, Los Angeles, CA 90095, USA
2Department of Physics, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK
3Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm, Sweden
4Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
5Department of Physics, McGill University, 3600 rue University, Montréal, Québec H3A 2T8, Canada
6LAPTh, Université de Savoie, CNRS, 9 chemin de Bellevue B.P.110, F-74941 Annecy-le-Vieux, France
Received: date / Accepted: date

Abstract We introduce ScannerBit, the statistics and
sampling module of the public, open-source global fitting
framework GAMBIT. ScannerBit provides a standardised
interface to different sampling algorithms, enabling the
use and comparison of multiple computational methods
for inferring profile likelihoods, Bayesian posteriors, and
other statistical quantities. The current version offers
random, grid, raster, nested sampling, differential evolu-
tion, Markov Chain Monte Carlo (MCMC) and ensemble
Monte Carlo samplers. We also announce the release of a
new standalone differential evolution sampler, Diver, and
describe its design, usage and interface to ScannerBit.
We subject Diver and three other samplers (the nested
sampler MultiNest, the MCMC GreAT, and the native
ScannerBit implementation of the ensemble Monte Carlo
algorithm T-Walk) to a battery of statistical tests. For
this we use a realistic physical likelihood function, based
on the scalar singlet model of dark matter. We examine
the performance of each sampler as a function of its
adjustable settings, and the dimensionality of the sam-
pling problem. We evaluate performance on four metrics:
optimality of the best fit found, completeness in explor-
ing the best-fit region, number of likelihood evaluations,
and total runtime. For Bayesian posterior estimation at
high resolution, T-Walk provides the most accurate and
timely mapping of the full parameter space. For profile
likelihood analysis in less than about ten dimensions, we
find that Diver and MultiNest score similarly in terms of
best fit and speed, outperforming GreAT and T-Walk; in

agmartine@astro.ucla.edu
bj.mckay14@imperial.ac.uk
cbenjamin.farmer@fysik.su.se
dp.scott@imperial.ac.uk

ten or more dimensions, Diver substantially outperforms
the other three samplers on all metrics.

Contents

1 Introduction . 2
2 Package description 3
3 Statistics and scanning 4

3.1 Priors and sampling distributions 4
3.1.1 Built-in one-dimensional priors 5
3.1.2 Built-in multi-dimensional priors 6
3.1.3 Additional built-in priors 6

3.2 Plugins . 6
4 Setup and input file options 7

4.1 Input file Parameters section 7
4.2 Input file Priors section 7
4.3 Input file Scanner section 8
4.4 ScannerBit standalone executable 8

5 Simple scanners . 9
5.1 The random sampler 9
5.2 The grid and square_grid scanners 9
5.3 The raster scanner 9
5.4 The toy_mcmc scanner 9

6 The postprocessor . 9
7 Markov Chain Monte Carlo 10

7.1 The GreAT software 10
7.2 GreAT–ScannerBit interface 11

8 Ensemble MCMC . 11
8.1 T-Walk . 11

9 Nested sampling . 13
10 Differential evolution 13

10.1 Algorithmic details 13
10.1.1 Mutation 14
10.1.2 Crossover 14
10.1.3 Selection 15
10.1.4 Advanced mutation and crossover strategies 15
10.1.5 Self-adaptive differential evolution 16

10.2 The Diver package 16
10.2.1 Design and invocation 16
10.2.2 Adaptive differential evolution: jDE and

λjDE . 17

2

10.2.3 Discrete parameters and parameter-space
partitioning 17

10.2.4 Population diversity and duplicate indi-
viduals . 18

10.2.5 Approximate posterior and evidence esti-
mates . 18

10.2.6 ScannerBit interface 19
11 Scanner performance comparisons 19

11.1 MultiNest . 22
11.2 Diver . 23
11.3 T-Walk . 23
11.4 GreAT . 24
11.5 The effect of dimensionality on performance . . . 26
11.6 Scanning efficiency 27
11.7 Posterior sampling 28
11.8 Discussion . 30

12 Conclusions . 31
13 Acknowledgements . 31
A Sources, options and outputs of the Diver package . . 31

A.1 Sources . 31
A.2 Run options . 32
A.3 Output formats 34

B Scanner options and outputs 35
B.1 Postprocessor . 35
B.2 GreAT . 35
B.3 T-Walk . 36
B.4 MultiNest . 36
B.5 Diver . 37

C Custom priors . 37
D Plugin Declaration and Interface 38

D.1 Plugin declaration 39
D.2 Interface to input file 40
D.3 Interface to prior object 40
D.4 Interface to GAMBIT printer system 40
D.5 Scanner plugins 41

D.5.1 Scanner plugin example 41
D.6 Objective plugins 41

D.6.1 Objective plugin example 42
E YAML input file example 42
F Glossary . 43

1 Introduction

Science has entered an era of increasing computational
complexity. Large data sets and burgeoning model com-
plexity have necessitated the development of increas-
ingly sophisticated and efficient analysis techniques. As
datasets and theories in particle physics and cosmology
have become more computationally expensive to work
with, the problem of efficiently and comprehensively
sampling model parameter spaces has become steadily
more challenging. Simple random parameter sampling
(e.g. [1, 2]) has gradually proven more inadequate as
time goes on, as it typically leads to incomplete and
biased inferences when applied to all but the simplest
problems.

Workers in various fields have employed increasingly
advanced numerical and statistical methods to deal with
this challenge. Bayesian numerical techniques such as

Markov Chain Monte Carlos (MCMCs) became particu-
larly popular in cosmology, because of their theoretical
near-linear scalability with parameter dimensionality.
Cosmic Microwave Background (CMB) analyses were
amongst the first such applications of MCMCs [3], with
later improvements and optimisations brought about
through the use of adaptive techniques and robust con-
vergence criteria [4–6]. MCMCs also proved popular
in particle physics, for the exploration of moderately
complex supersymmetric model parameter spaces [7–11].
Nested sampling [12] gradually displaced MCMCs in
many such applications [13–16], owing to its efficiency
for mapping posterior distributions and calculating the
Bayesian evidence, especially when dealing with multi-
modal likelihoods [17].

Because the likelihood functions involved are compu-
tationally expensive, fully frequentist Neyman construc-
tions are typically not possible. A popular alternative to
Bayesian inference is to examine the prior-independent
profile likelihood. However, Bayesian methods such as
MCMCs and nested sampling are not necessarily opti-
mal sampling strategies in this case [18]. Estimating the
Bayesian posterior requires integrating the likelihood in
various directions of the parameter space, whereas the
profile likelihood relies instead on maximising it in those
directions. From the perspective of numerical analysis,
to a first approximation Bayesian sampling is an inte-
gration problem, whereas profile likelihood estimation
is an optimisation problem. It is therefore unsurprising
that modern multi-modal optimisation strategies such
as genetic algorithms and differential evolution have
proven more efficient than Bayesian methods in some
applications of the profile likelihood [18, 19].

This picture is further complicated by additional
requirements not present in traditional optimisation
problems. To be able to infer reliable confidence in-
tervals on parameters, the likelihood function must be
sampled sufficiently well around the maximum to al-
low isolikelihood contours to be inferred. Unfortunately,
determination of the global best-fit point does not neces-
sarily guarantee that this will be the case. In this respect,
some Bayesian methods can in fact be more efficient
than optimisers, even if they are less efficient at finding
the global maximum [20]. Another issue is the degree
to which the resulting confidence intervals achieved in
the profile likelihood analysis have the expected statis-
tical coverage properties [21–24]; this can be strongly
influenced by the choice of scanning algorithm.

In this paper we provide a detailed manual for Scan-
nerBit, a package designed to provide a common interface
to a range of different sampling algorithms, so that the
performance of the different algorithms can be easily
compared, and the most appropriate algorithm (or com-

3

bination thereof) chosen for the problem at hand. We
also carry out some such comparisons of sampling algo-
rithms, and provide recommended settings for different
samplers.

ScannerBit is designed to be modular and expandable,
allowing it to access a multitude of different samplers in
a plug and play fashion. As the GAMBIT project grows,
we will continually add scanners to the ScannerBit suite.
Users can also easily implement various scanners to
meet their personal needs. ScannerBit initially ships with
four production-quality scanners: an adaptive MCMC
(GreAT), an ensemble MCMC (T-Walk), a nested sam-
pler (MultiNest) and a differential evolution sampler
(Diver). GreAT [25] and MultiNest [17] are existing exter-
nal packages. Diver is a new external package that we
describe for the first time here. T-Walk is implemented
natively in ScannerBit. The ScannerBit package also con-
tains a postprocessor and a series of simple scanners,
including random, grid and list-based samplers and a
more basic toy MCMC (for tutorial purposes).

All the scanners initially accessible from ScannerBit
are designed for the calculation of profile likelihoods
or Bayesian posteriors, such that they select optimal
parameter combinations for which to perform likelihood
calculations. These samplers therefore require the like-
lihood to be explicitly calculable for any parameter
combination, either by parametrisation or numerical
approximation. The design of ScannerBit is not limited
to this operation mode, however, and can easily support
methods that do not require explicit calculation of a
likelihood, such as Approximate Bayesian Computation
[26].

ScannerBit can either be used within its parent code
GAMBIT [27], or as a standalone package, or simply
interfaced directly to an external likelihood function.

We begin by describing the ScannerBit package in
Sec. 2, before giving the implementation details and the
underlying statistical methods that we employ in Sec.
3. The user interface is covered in Sec. 4, and the sim-
ple scanners in Sec. 5. Secs. 6–10 respectively describe
the postprocessor, MCMC, ensemble MCMC, nested
sampler and differential evolution samplers. In Sec. 11
we perform a detailed comparison of the different algo-
rithms implemented in ScannerBit, and their available
parameters and options. We summarise in Sec. 12, then
provide an extensive set of appendices. These cover the
sources, options and outputs of our differential evolu-
tion sampler Diver (Appendix A), ScannerBit options
and outputs for all five major scanners (Appendix B),
examples of how to implement new priors (Appendix C),
examples of adding new scanners and objective functions
(Appendix D), a minimal example input file (Appendix

E), and a glossary of the most commonly-used GAMBIT
terms (Appendix F).

More details on GAMBIT itself can be found in Ref.
[27], on its various physics modules in Refs. [28–31], and
on first physics results in Refs. [32–34].

2 Package description

ScannerBit is designed to be completely modular and
expandable. It achieves this via a plugin interface, which
allows various scanners and likelihood functions to be
connected at will. Plugins are either scanner plugins,
which each contain code implementing a single sampling
algorithm, or objective plugins, also known as test func-
tion plugins, which contain specific objective functions
to be scanned (such as simple test functions and like-
lihoods). Each plugin is compiled into an independent
library with a common interface to ScannerBit, so that
at runtime it can be passed necessary information like
the dimensionality of the space being scanned and the
user’s preferred output stream.

ScannerBit implements priors as transformations of
uniform probability distributions. It transforms uniform
random deviates generated in the unit hypercube (i.e.
equal-probability values between 0 and 1 for every dimen-
sion of the parameter space), into actual model-space
parameter values. To do this, it requires the user to
select a prior transformation to apply to each parame-
ter. This allows scanner plugins to operate completely
independently of priors. Sampler implementations are
kept entirely independent of prior implementations, al-
lowing any scanner to be used with any prior.1 Priors
can be added to ScannerBit in a similarly modular way
to scanner and test function plugins (see Sec. 3.1).

ScannerBit grants scanner plugins access to specific
functions necessary for them to perform their sampling
task. At the simplest level, the only such function is
the log-likelihood, allowing evaluation of the likelihood
for any given point in the hypercube. The function(s)
provided to a scanner plugin at runtime are selected
by assigning purposes (such as “LogLike”) to different
objective plugins or GAMBIT capabilities, and then
telling each scanner which purpose(s) corresponding to
the inputs it should collect. All ScannerBit objective
functions tagged for a common purpose (or GAMBIT
module functions with relevant capabilities tagged for a

1Although scanning the unit hypercube is the default, ScannerBit
does also permit special scanners developed for specific models
to choose to bypass the prior transformation entirely, in order
to work directly with model parameter values. Users are advised
to avoid this unless strictly necessary though, as the resulting
scanner is neither usable with other models nor other priors.

4

common purpose) are then combined into a single func-
tion, and provided to the scanner as a function pointer.
In a regular GAMBIT scan, this is the total log-likelihood
function provided by the likelihood container.

Generically, objective plugins take model parameter
values as inputs, and return some quantity useful to
ScannerBit for performing a scan. Each objective can
be individually assigned a purpose to enable its output
to be assigned appropriately in a scanner plugin. The
canonical example of an objective plugin is the merit
function to be used in a given scan, allowing ScannerBit
to determine which parameter combinations are better
than others, and to make informed choices about which
combinations to sample next. This function might be a
complicated likelihood (as in the case of the GAMBIT
likelihood container), or just a simple test function
for evaluating the performance of a new scanner. A more
advanced example of an objective plugin would be one
that provides the derivative of a merit function, for use
with e.g. optimisers that use derivatives to accelerate
their searches. Whilst each objective plugin is automati-
cally given access to the prior chosen for a given scan,
objective plugins can in fact also be employed to provide
the underlying transformation function used in a prior
(although this method is not mandatory for defining a
new prior – see Sec. 3.1).

Each plugin’s source code is placed in its own
subdirectory within ScannerBit/src/plugin_kind, where
plugin_kind is either scanners or objectives. The plu-
gin headers reside in their own subdirectory within
ScannerBit/headers/gambit/ScannerBit/plugin_kind. Each
plugin’s compilation and linkage is handled by the Scan-
nerBit CMake script.

3 Statistics and scanning

To launch a GAMBIT run, a user requests a parameter
scan of a certain model, specifying ranges and priors
of the model parameters, how to sample them, and the
quantities that should be calculated and included in
the scan. The GAMBIT model database activates the
relevant model ancestry, which the dependency resolver
uses together with the capabilities and types of the user’s
requested quantities to select and connect appropriate
module and backend functions into a dependency graph
(see Ref. [27]). Choosing which values of the model
parameters to run through this dependency graph is the
job of ScannerBit, the sampling and statistics module.

When requesting a quantity in a scan, users are re-
quired to assign it a purpose in the context of that
scan; this is set with the YAML option of the same
name, purpose. This may be set to Observable or Test,
indicating that the quantity should be computed and

output for every parameter combination sampled dur-
ing a scan. Alternatively, a user can assign something
to purpose that has a specific statistical meaning, such
as LogLike or Likelihood. Interfaces to parameter sam-
pling algorithms in ScannerBit allow the user to choose
which purpose to associate with the objective function
for the scanner at runtime. Following dependency reso-
lution, GAMBIT creates a likelihood container from
the module functions of the dependency graph that have
been assigned the purpose(s) that have been associated
with the sampling algorithm. The likelihood container
packages the module functions’ combined results into a
simple objective function for the sampler to call. The
sampler then chooses parameter combinations to sample,
sends each to the likelihood container, and receives some
sort of corresponding merit function for the parameter
combination in return.

The GAMBIT convention is to assign purpose:LogLike
to each component of a fit that is to be associated with
the scanner, and for the module functions in question
to return the natural log of the likelihood logL. The
likelihood container then combines the results of all
such module functions by simply summing their return
values, returning the result to the scanner as the total
log-likelihood. All sampling algorithms interfaced in
ScannerBit 1.0.0 allow only a single designated purpose to
drive a scan. More complicated scanners to be connected
in future versions will make use of multiple, different
purposes within a single scan.

3.1 Priors and sampling distributions

Most samplers are driven by ScannerBit to draw from
the unit interval [0, 1]. The sampled values are then
converted to real physical parameters internally, using
whatever prior the user has chosen when launching the
scan. In the simplest cases, this occurs by applying
the transformation method, where samples from the
unit interval are converted to samples from the desired
sampling distribution (i.e. prior), by applying the inverse
of the cumulative distribution function (CDF) of the
desired distribution. Here, a uniform random deviate x
is transformed into a random deviate y sampled from
a target distribution D with cumulative distribution
function F (y), by computing

y = F−1(x). (1)

Take as an example the case where a user requests
a flat ‘prior’ over the range [a, b] for some parameter.
ScannerBit expects the underlying sampler to provide
a number x in the interval [0, 1], and then applies the

5

transformation

y = F−1(x) = (b− a)x+ a, (2)

in order to obtain a sample in the range [a, b]. Here
F−1(x) is the inverse of

F (y) ≡
∫ y

a

P (x) dx

=
∫ y

a

dx

b− a

= y − a
b− a

, (3)

which is the CDF of P (x) ≡ 1/(b − a), the uniform
distribution over [a, b]. Thus, although the underlying
sampler chooses uniform random numbers for x from
the interval [0, 1], the final ‘physical’ parameter y will
be sampled uniformly from the interval [a, b]. Similarly,
if the user requests a ‘Gaussian’ prior (with mean µ and
standard deviation σ) for parameter y, then ScannerBit
will apply the transformation

y = µ+ σ
√

2 erf−1 (2x− 1) , (4)

so that uniform samples from the unit interval are
transformed into samples from the normal distribution
N (µ, σ).

It is important to note that the actual sampling
distribution of a scan only follows these transformed dis-
tributions in the special case where the underlying unit-
interval sampling is actually uniform. This corresponds
to the case of a purely random sampling algorithm (im-
plemented as the random sampler in ScannerBit; see Sec.
5.1).

If the underlying sampling is driven, for example,
by a Metropolis-Hastings algorithm, or an evolutionary
sampler, then the final samples will of course not be
drawn directly from the user-requested distribution. In
this case the user-requested sampling distribution still
has statistical implications, particularly for the Bayesian
interpretation of results, where it plays the role of the
prior probability distribution. For example, if the user
requests that a parameter have a Gaussian prior π(y),
and chooses to draw samples with a Metropolis-Hastings
algorithm, then the final density of points will be pro-
portional to the posterior probability density p(y)

p(y) ∝ L(y)π(y). (5)

This is because it is a property of the Metropolis-
Hastings algorithm that the density of sample points is
proportional to L in the unit-interval parameter space –
which is then distorted to the physical parameter space
density d(y) under the mapping y = F−1(x)

d(y) = L(y)
∣∣∣∣dF (y)

dy

∣∣∣∣ (6)

= L(y)f(y). (7)

Here f(y) is the probability distribution function (PDF)
corresponding to the CDF F (y), and is therefore the
user-requested ‘prior’, and d(y) is proportional to the
posterior probability density p(y).

ScannerBitmakes a wide range of possible prior trans-
formations available. These priors are separated into
three groups: one-dimensional (flat, log, double_log_
flat_join, sin, cos, tan, cot), multi-dimensional (gaussian,
cauchy), and others (same_as, fixed_value, none, plugin).
These priors, and their corresponding options, can be
specified in the Priors section of the YAML input file
that defines a scan, or, in the case of one-dimensional
priors, also in the Parameters section (see Section 4).
Users can also define custom priors, which can be added
to the set of priors available to ScannerBit (see Appendix
C).

3.1.1 Built-in one-dimensional priors

ScannerBit currently includes six one-dimensional priors:

sin: P(x) ∝ sin(x)
cos: P(x) ∝ cos(x)
tan: P(x) ∝ tan(x)
cot: P(x) ∝ cot(x)
flat: Uniform in x, i.e. P(x) ∝ const.
log: Uniform in log x, i.e. P(x) ∝ 1/x.
double_log_flat_join: A piecewise prior that patches
together sections uniform in log(−x), uniform in x,
and uniform in log x. Useful when the desired prior
density is positive at zero, but logarithmic at large
absolute values of the parameter. i.e.

P(x) ∝

1/|x| : lower < x < flat_start
const : flat_start ≤ x ≤ flat_end
1/x : flat_end < x < upper

Each prior has a number of configurable options. These
may be entered as key-value entries for the parameter
in question, in the input YAML file. For one-dimensional
priors, the options can be entered in either the Priors or
the Parameters section of the YAML file (further details
on the input file format can be found in Sec. 4). The
following options are available for all 1D priors except
double_log_flat_join:

range: Specifies the range in the form [low, high].
shift: Shifts all parameter samples by the specified
value. Defaults to 0 if absent.

scale: Multiplies all parameter samples by the speci-
fied value. If set to degrees, will convert degrees to
radians. Defaults to 1 if absent.

6

output_scaled_values: If true, any scale and/or shift
applied to the parameter during a scan is also applied
to the printed value of the parameter. Defaults to
true if absent.

The double_log_flat_join prior also accepts the same
range option, as well as

ranges: An extended version of range, taking the form
[lower, flat_start, flat_end, upper]. The negative log
prior is applied over parameter values ranging from
the first to the second entry, the flat prior is applied
from the second to the third entry, and the positive
log prior is applied between the third and fourth
entries. This option takes precedence over range.

flat_start,flat_end: The boundaries of the interior
region over which to apply the flat prior; these op-
tions are expected whenever the 4-component ranges
option is not in use.

lower,upper: The outer boundaries of the logarithmic
prior sections. These options are only used if neither
ranges nor range is present. They require the presence
of flat_start and flat_end.

3.1.2 Built-in multi-dimensional priors

ScannerBit presently ships with two real multi-
dimensional priors, and one example function:

gaussian: Gaussian distribution of the form
P(x) ∝ exp[−(x− x̄) · C−1 · (x− x̄)/2],
with C a covariance matrix.

cauchy: Cauchy distribution of the form
P(x) ∝

[
1 + (x− x̄) · C−1 · (x− x̄)

]−1,
with C a covariance matrix.

dummy: Performs a dummy transformation of the unit
hypercube parameters back to themselves; included
as a simple example of the code needed to define a
new multidimensional prior (see Appendix C).

The gaussian and cauchy priors have options:

cov: Full covariance matrix. Off-diagonal elements de-
fault to zero if this option is omitted.

sigs: A vector containing the square root of each of
the diagonal components of the covariance matrix.
Defaults to 1 if absent.

mean: A vector containing the mean (for gaussian) or
median (for cauchy) of each parameter. Defaults to
0 if absent.

3.1.3 Additional built-in priors

ScannerBit is also equipped with some useful non-
standard priors:

same_as: Specifies that some parameter is the same as
another parameter. The net effect is to make both
parameters appear as a single parameter to the scan-
ner, but as two distinct parameters to the objective
function. This prior accepts an eponymous option
same_as, which is used to choose which parameter
to shadow. It also optionally accepts the scale and
shift keywords described in Sec. 3.1.1, allowing the
parameter to be presented to the objective function
as a rescaled, shifted version of the parameter it has
been set up to shadow.

fixed_value: Fixes this parameter to a specified value,
with the actual value set by the option of the same
name. If a sequence of values is given, the values
are simply iterated over in each subsequent point,
repeating from the beginning once exhausted. This
prior also accepts the scale and shift keywords.

none: Specifies that this parameter will be directly
set by the scanner. If the scanner does not do so,
ScannerBit will throw an error.

plugin: Uses a plugin function as the prior. The plugin
to be used is set with an option of the same name
(i.e., plugin), and must be defined as an objective
plugin under the objectives tag in the Scanner section
of the input YAML file. Note that in the current
version of ScannerBit, using the same plugin more
than once in a given scan is not supported, e.g. as
two separate applications of a one-dimensional prior
to two different parameters.

3.2 Plugins

ScannerBit plugins are independent code snippets, sep-
arate from the main ScannerBit code. Scanner plu-
gins provide a standard interface between ScannerBit
and sampling algorithms (whether external libraries or
native ScannerBit implementations). Objective plugins
(otherwise known as test function plugins) provide
an interface between ScannerBit and external objective
or test functions.

Plugin functionality falls into three main categories:
loading, unloading, and the main function provided to
ScannerBit by the plugin.

loading: When a plugin is loaded, it is provided with
some generic information needed for running any
plugin, as well as specific information relevant to its
plugin type. The generic information includes a list
of expected input file options, as well as interfaces
to the printer and prior transform. Plugin-specific
information may include likelihood functor access,
hypercube parameter dimension, and parameter key
names. Each plugin has a constructor that runs when

7

the plugin is loaded, allowing it to perform startup
operations such as variable initialisation.

unloading: When a plugin is no longer needed, any
shared libraries it has loaded are unloaded, and the
plugin deconstructor runs. This typically performs
any plugin-specific shutdown operations, such as
closing files or releasing memory.

main function: Every plugin has some core func-
tionality, provided by its plugin_main function. For
example, a scanner plugin’s plugin_main should con-
tain code that samples an objective function over a
specified parameter space — whereas an objective
plugin to be used as a likelihood function would
provide functionality necessary for likelihood evalua-
tions. This functionality may have any interface, but
it must be consistent with the goal of the plugin. For
example, a likelihood plugin should accept a map of
parameters and return a likelihood value, whereas a
scanner plugin would not accept inputs.

Because of this general format, plugins can be used for a
wide range of tasks. Scanner plugins specifically contain
code to perform parameter scans of various models, do
not require inputs, and simply return an integer indicat-
ing the success or failure of the scan. Objective plugins
are for more general use, and may provide functions that
can be used as likelihoods, observable functions, prior
transforms, or in fact any other quantity that might
need to be computed for each point in parameter space
(e.g. likelihood gradients). Objective plugins are not re-
quired to have any specific interface, but are all granted
access to the same information and utility functions
by ScannerBit. Detailed information about definition,
design and operation of ScannerBit plugins can be found
in Appendix D.

4 Setup and input file options

ScannerBit scans are specified and initiated using an
input file written in YAML. This file must contain at
least four sections: Parameters, Scanner, Printers and
KeyValues. It may also optionally contain a Priors sec-
tion. We do not deal with the Printers and KeyValues
sections in this paper, as they refer to GAMBIT features
described in detail in Ref. [27]; minimal working entries
for these sections can be found in the example input
YAML file given in Appendix E. The Parameters section
indicates which models and parameters to scan, as well
as (optionally) simple prior definitions for individual
parameters. The Priors section contains additional —
potentially more complicated — prior definitions not
included in the Parameters section. The Scanner section
contains all scanner and plugin options and definitions.

4.1 Input file Parameters section

The Parameters section contains information about the
models and their associated parameters, and follows the
basic format:

Parameters:
model:
parameter_name1:
...options...

parameter_name2:
...options...

...

The Parameters section can contain several models, where
each model contains several parameters. Each declared
parameter can have the following options, associated
with the prior to be applied to the parameter:

prior_type: Specifies a one-dimensional prior to be ap-
plied to the parameter. If this option is absent but
either the range, same_as or fixed_value option is
given, ScannerBit will deduce the prior type from the
presence of the other option.

range: Specifies the range of parameter values to be
sampled. In the absence of an entry for prior_type,
specifying a range causes a flat prior to be adopted.

shift: Adds the given value to the parameter.
scale: Multiplies the parameter by the given amount.
same_as: Indicates that this prior is the same as another

parameter. Note that ScannerBit parameters are de-
noted by a string of the form model::parameter_name.

fixed_value: Fixes the parameter to the given value.
The same effect can be achieved in even more com-
pact form, by giving no options for a parameter
except a value or sequence of values, in the form
parameter_name: value.

lower,flat_start,flat_end,upper: for the double_log_
flat_join prior (see Sec. 3.1.1).

Each of these options are optional. If none of them is
set, the prior must be specified in the Priors section.
Like the flat prior, the fixed_value and same_as priors
do not need to be specifically indicated with prior_type,
as they are implicitly defined by the declaration of their
options. More details can be found in the subsection
dealing specifically with one-dimensional priors (Sec.
3.1.1).

4.2 Input file Priors section

Any parameter lacking a specified one-dimensional prior
in the Parameters section must be associated with a
sampling range and prior in the Priors section. A prior
definition in this section takes the form:

8

Priors:
prior_name:

parameters: [parameter_list]
prior_type: type
options

Here, prior_name can be any unique identifier, and need
not map to any particular name within ScannerBit. The
parameter_list is a sequence of parameters to apply the
prior to. The type of the prior must match one of the
known ScannerBit priors listed in Sec. 3.1. This should
be followed by any additional key-value pairs needed to
set the desired options of the chosen prior.

4.3 Input file Scanner section

The Scanner section defines the scanners, objectives and
their options. It has the general form:
Scanner:

use_objectives: [objective1, objective2, ...]
use_scanner: chosen_scanner

scanners:
scanner1:

plugin: plugin1
options

scanner2:
plugin: plugin2
options

...

objectives:
objective1:

purpose: purpose1
plugin: plugin3
options

objective2:
purpose: purpose2
plugin: plugin4
options

...

All scanners that a user wishes to make available for
a given scan must be listed in the scanners node, and
all objectives in the objectives node. Each scanner or
objective must be given a local name (scanner1, scanner2,
objective1, etc), and a plugin and any relevant options
must be associated with that name. Objectives also need
to be assigned a purpose, which tells ScannerBit and its
scanner plugins how the objective plugin should be used.
Exactly one of the scanners under the scanner node can
be chosen as the sampling algorithm for the scan, by
setting use_scanner to the name of the block that defines
the preferred scanner. Arbitrarily many objectives can
be activated with the use_objectives directive.

4.4 ScannerBit standalone executable

Like other GAMBIT modules, ScannerBit can be com-
piled into a standalone executable, and used indepen-
dently of GAMBIT. This can be useful for sampling exter-
nal objective functions that do not come from GAMBIT.
The build command is simply

make ScannerBit_standalone

which creates ScannerBit_standalone and places it in
ScannerBit/bin.

The interface of the ScannerBit _standalone
is similar to that of GAMBIT itself. Launching
ScannerBit_standalone -f yaml_file runs a scan defined in
the file yaml_file. To replace rather than resume from any
existing files when beginning a scan, use the -r option.

ScannerBit_standalone also provides a diagnostic
list of recognised scanners and objective plugins à la
GAMBIT, using the commands ScannerBit_standalone
scanners and ScannerBit_standalone objectives (or sim-
ply ScannerBit_standalone plugins to see both together).
These commands list the name, version, and status of
all the plugins that ScannerBit is aware of.

The standalone can also provide diagnostic in-
formation on a specific plugin, using the command
ScannerBit_standalone plugin_name. Individual plugin di-
agnostics contain three sections. The General Plugin
Information section displays the name, type, version,
and status of the plugin. The status ok indicates that
a plugin is properly linked. The status reqd lib(s)
not found indicates that a library requested by the
reqd_libraries macro cannot be found. A status of
invalid lib path(s) in locations file indicates
that a library specified in config/scanner_locations.yaml
or config/objective_locations.yaml (or their default
equivalents; see Sec. D.1) cannot be found at the spec-
ified location. Similarly, reqd header file(s) not
found occurs when a header listed under reqd_headers
cannot be located, and invalid include dir(s) in
locations file indicates that an include folder
that was specified in the scanner_locations.yaml or
objective_locations.yaml files cannot be located. Finally,
a status of excluded indicates that the plugin was
-Ditched from the configuration of the code when CMake
was invoked. The Header & Link Info section contains
include and link paths of headers and libraries requested
by the plugin, information about which of them were
found, and a list of all input file options that the plu-
gin requires to be defined in order to run. Finally, the
Description section contains a short description of the
plugin. This typically includes recognised input file op-
tions and a description of the algorithm or function that
the plugin provides.

9

5 Simple scanners

ScannerBit includes four simple scanners, all found in
ScannerBit/src/scanners/simple/: a random sampler, a
grid sampler, a list-based raster sampler, and a simple
toy Metropolis MCMC toy_mcmc. These are all paral-
lelised with MPI, using a simple prescription that simply
distributes objective calculations evenly among the avail-
able processes. Below we give the available options for
each simple scanner, and default values in square brack-
ets (where defaults exist).

5.1 The random sampler

The random sampler draws a user-defined number of ran-
dom points from the specified prior. The only available
option is

point_number[10]: The number of random samples de-
sired.

5.2 The grid and square_grid scanners

These scanners calculate likelihoods at points on a uni-
form, user-defined grid in the unit hypercube. The grid
scanner allows the grid resolution be specified sepa-
rately for each parameter, whereas square_grid is simply
a shortcut for the special case where the grid has the
same number of points in every dimension. The grid
resolution is set with the option

grid_pts[2]: For the grid scanner, a vector of integers
that specifies the number of grid points in each di-
mension of the parameter space. For the square_grid
scanner, a single integer.

5.3 The raster scanner

This scanner computes an objective over a user-defined
list of parameter points. The available options are:

like: The purpose to use as the objective.
parameters: The parameters specified by the user.

The parameters option should contain a list of param-
eters, with a number or sequence that specifies the
user-defined values, e.g.

raster_example:
plugin: raster
like: LogLike
parameters:

"model::param_1": [0, 1]
"model::param_2": 0.5
"model::param_3": [2, 3, 4]

To obtain sensible results, the none prior should be
employed for any parameters where values are given via
the parameters option. Any parameters not specified are
chosen randomly, and transformed by the chosen priors.
Parameters can be specified with a single number to
apply to all points in the list, or as a vector of values.
Different parameters can be assigned lists of different
lengths, which simply repeat once they are exhausted.
In the example above, ScannerBit will run the points
(0, 0.5, 2)→ (1, 0.5, 3)→ (0, 0.5, 4), and then terminate.

5.4 The toy_mcmc scanner

This the simplest possible implementation of the
Metropolis algorithm [35], with the proposal distribu-
tion set to the prior. Given a randomly drawn initial
point xi, a candidate point x′i is randomly selected from
the unit hypercube. The candidate is then accepted with
probability

α = min[1,L(x′i)/L(xi)]. (8)

If a point is accepted, it becomes the comparison point
in the next iteration. If it is rejected, the previous point
is retained. The scanner keeps track of the number of
times a given point is retained, and the resulting point
multiplicities can then be used as weights in subsequent
analysis, in particular for computing Bayesian posterior
probability densities. There is no convergence criterion
implemented in the toy_mcmc; the scanner simply runs
for a fixed number of points given by the user:

point_number[1000]: The number of distinct (accepted)
points to be computed in the chain.

6 The postprocessor

This plugin reads a series of samples computed in some
previous scan, and computes additional likelihoods or
observables for them. Log-likelihoods for the original
samples may be added to or subtracted from a newly-
computed contribution, allowing existing likelihood con-
straints to be replaced or new ones added to previously-
completed scans. Like the simple scanners, the post-
processor uses MPI to divide its objective calculations
evenly between available processes.

The postprocessor operates as a scanner plugin. From
the perspective of ScannerBit and GAMBIT, it is a scan-
ning algorithm. However, it does not generate sample
points for itself, but instead obtains them directly from
previous scan output. When running from GAMBIT,
this means that the likelihood container then oper-
ates using the parameter values from the previous scan

10

as input, and the output likelihood and observables are
added to the existing data from the previous scan. A
new set of output files is created, just as they are when
running a ‘true’ scan. All data from the original output
that does not conflict with new output is copied to the
new output files, leaving the original files unchanged.

In most respects, the postprocessor operates as a
standard GAMBIT scanner: it can be run via the stan-
dard GAMBIT interface, it can be run in parallel via
MPI, it can be stopped and resumed, and all printer
output from the likelihood container is treated the same
as it would be during a ‘normal’ scan. The options and
particulars of the postprocessor are given in Appendix
B.1.

7 Markov Chain Monte Carlo

In Bayesian parameter estimation and model compari-
son, calculating evidence values or one-dimensional pos-
terior PDFs for individual parameters or observables re-
quires the ability to integrate the full multi-dimensional
posterior density. An efficient sampling method for the
posterior PDF is therefore mandatory. Of the meth-
ods proposed for this task, Markov Chain Monte Carlo
(MCMC) algorithms are amongst the most tried and
tested [36, 37].

In general, MCMC methods allow one to study any
target distribution of a vector of parameters θ, by gener-
ating a sequence of n parameter combinations (a ‘chain’)
{θi}i=1,...,n = {θ1,θ2, . . . ,θn}. The chain constitutes
a Markov process, because each θi+1 is drawn from a
proposal distribution that is fully determined by the
previous point θi. MCMC algorithms are designed to
ensure that the time spent by the Markov chain in a re-
gion of the parameter space is proportional to the target
posterior PDF value in this region. Hence, from such a
chain, one can obtain a series of independent samples
from the posterior PDF. Up to a common normalisation
constant (the evidence), both the target posterior PDF
and any marginalised versions of it can be estimated
by simply counting the number of samples within the
relevant region of parameter space.

7.1 The GreAT software

The Grenoble Analysis Toolkit (GreAT) [25] is a mod-
ular, user-friendly, object-oriented C++ MCMC frame-
work for sampling user-defined parameter spaces. It uses
the Metropolis-Hastings algorithm [35–38] to generate
Markov chains. This prescription ensures that the sta-
tionary distribution of the chain asymptotically tends
to the target distribution (typically the posterior PDF),

by generating a candidate state θtrial picked at random
from a proposal distribution q(θtrial|θi) and accepting
the candidate with probability a,

a(θtrial|θi) = min
(

1, p(θtrial)
p(θi)

q(θi|θtrial)
q(θtrial|θi)

)
. (9)

Here, the target distribution p(θ) can be reduced to the
likelihood function L assuming a flat prior for θ. If the
trial is accepted, it becomes the new state, whereas if it
is rejected, the current state is retained. This criterion
ensures that once at its equilibrium, the chain samples
the target distribution p(θ).

To optimise the efficiency of an MCMC, the proposal
distribution should be as close as possible to the true
distribution. The MCMC implemented in GreAT uses a
multivariate Gaussian distribution, accounting for pos-
sible correlations between the parameters of the model.
GreAT runs multiple MCMC chains, either sequentially
or in parallel depending on the user’s MPI configuration.
At the termination of each chain, based on the samples
contained in all chains completed so far, GreAT updates
the covariance matrix to be used to define the proposal
distribution in subsequent chains. The updated covari-
ance matrix is saved externally, in order to allow chains
running in parallel to always use the latest version.

To obtain a reliable estimate of the target distribu-
tion, GreAT bases its analysis of a chain on a selected
subset of its points. Some steps at the beginning of the
chain (during ‘burn-in’) are discarded, to avoid the ran-
dom starting point of the chain biasing the sampling. By
construction, each step of the chain is correlated with
the previous steps: GreAT obtains sets of independent
samples by thinning the chain over its autocorrelation
length l. The single-parameter autocorrelation on length
scale k, in a chain of total length N and for parameter
θ, is

r(k) =
∑N−k
i=1 (θi − θ̄)(θi+k − θ̄)∑N

i=1(θi − θ̄)2
. (10)

GreAT defines the correlation length lj for the jth pa-
rameter to be the smallest inter-sample interval such
that r(lj) ≤ 0.5; samples separated by scales larger
than this are considered independent. The overall cor-
relation length l for the chain is defined as the max-
imum correlation length across all m parameters, i.e.
l ≡ maxj=1..m lj .

The fraction of independent samples measuring the
efficiency of the MCMC is defined to be the fraction
of samples remaining after discarding the burn-in steps
and thinning the chain. The final results of the MCMC
analysis are the target distribution and all marginalised
distributions, obtained by counting the number of sam-
ples within the relevant region of parameter space.

11

7.2 GreAT–ScannerBit interface

As implemented in GreAT, the Metropolis-Hastings al-
gorithm has no default convergence criterion. The user
is required to specify a chain length, i.e. a number of
steps, for each Markov chain. These options are given
in Appendix B.2

GreAT also extracts the relevant trials for further
analysis. It first calculates the burn-in length b corre-
sponding to the first sample θb for which p(θb) > p1/2,
where p1/2 is the median of the target distribution ob-
tained from the entire chain (i.e. the median posterior
density, at least in standard applications). To obtain
uncorrelated samples within each chain, it then com-
putes the autocorrelation function for each parameter
(Eq. 10).

GreAT performs these operations after computing
each chain, before using the results to update the covari-
ance matrix. If the chain did not converge, a warning
message is printed, and a new chain is started using
the old covariance matrix. At the end of the run, the
complete statistics for all chains run (burn-in length,
correlation length, number of independent samples) are
printed out in GreAT’s native format. The independent
samples and their multiplicities are stored in whatever
output format the user has instructed GAMBIT to use
for printing results.

8 Ensemble MCMC

Standard MCMC algorithms are traditionally some-
what problematic in large or highly multi-modal param-
eter spaces, as their efficient operation requires a well-
tuned proposal density. Some modern MCMC samplers
(such as GreAT) address this by adaptively varying the
proposal distribution based on samples from previous
runs. Other successful strategies use multiple concurrent
MCMC chains as the basis of the proposal distribution.
These are commonly referred to as ensemble samplers.

In an ensemble MCMC, each chain is individually ad-
vanced by constructing a proposal PDF from the set of
all current points across the full set of concurrent chains.
Procedurally, this equates to exploring an augmented pa-
rameter space consisting of n copies of the original space,
{θ(0),θ(1), . . . ,θ(n)} corresponding to a composite pos-
terior distribution P(θ(0),θ(1), . . . ,θ(n)) =

∏n
i=0 P(θ(i))

where P(θ) is the actual target distribution of interest.
These algorithms are able to easily adapt their proposal
densities to the target distribution, and exhibit perfor-
mance that is generally invariant under affine trans-
forms (e.g. θ → φθ). Unfortunately, the performance
of these algorithms is highly sensitive to the number of
concurrent chains, with the number of chains required

typically scaling linearly with the parameter dimension;
this makes the overall number of likelihood evaluations
needed for convergence proportional to the square of
the parameter dimension.

8.1 T-Walk

In the serial version of the T-Walk algorithm [39], chains
are advanced one at a time, with the proposal density
based on the current parameter points of all chains not
chosen for advancement, and the chain to be advanced
chosen randomly at each iteration. In the parallel ver-
sion, each MPI process randomly selects a chain for
advancement at each iteration, and the proposal dis-
tribution used for advancing all chains is based only
on the state of the remaining chains not chosen for ad-
vancement by any process in that iteration. In what
follows, we refer to chains that are being advanced in a
given iteration as the advancing chains, and the others
(those contributing to the proposal distribution) as the
proposal chains.

T-Walk uses one of four movement strategies when
advancing a chain, choosing randomly between them
at each iteration. Two of these strategies, the walk and
traverse moves, shift the current chain position (θi) by
some multiple of the distance between it and the cur-
rent point in a randomly-selected proposal chain. The
remaining two moves, hop and blow, cause advancing
chains to perform different random Gaussian jumps,
with covariance matrices calculated from the full set of
current points in the proposal chains.

Walk: advances the current chain θi by jumping either
towards or away from a randomly selected proposal
chain θj , i 6= j. This move produces a candidate
point θ′i,

θ′i = θi + (1− α)(θj − θi), (11)

where α is a parameter drawn from a distribution
G(α). For distributions satisfying

G
(

1
α

)
= αG(α), (12)

detailed balance is satisfied if the candidate point is
accepted with probability

p = min
[
1, αn−1P(θ′i)

P(θi)

]
. (13)

Here n is the dimension in which the T-Walk moves
are being performed (the so-called ‘projection dimen-
sion’, described later in this subsection). ScannerBit’s

12

implementation of T-Walk uses the distribution

G(α) =
√
aw

2(aw − 1) ×
{

1√
α
, for 1

aw
≤ α ≤ aw

0 otherwise,
(14)

where aw is a user-configurable input parameter of
the algorithm.

Traverse: similar to walk, but the chain is advanced by
jumping over the point in the proposal chain. The
candidate point is

θ′i = θi + (1 + β)(θj − θi), (15)

where β can take any positive value. Detailed bal-
ance is satisfied if β follows a distribution H(β) that
satisfies

H
(

1
β

)
= H(β), (16)

and the Metropolis-Hastings acceptance probability
is modified as

p = min
[
1, βn−2P(θ′i)

P(θi)

]
, (17)

where n is again the projection dimension. Scanner-
Bit’s implementation of T-Walk uses

H(β) = a2
t − 1
2at

×
{
βat for 0 < β ≤ 1
β−at for β > 1, (18)

where at is another parameter of the algorithm, con-
figurable by the user.

Hop and blow: In general, the walk and traverse moves
available to the advancing chains only form a basis
for some smaller-dimensional subspace of the full
parameter space. With only these moves available,
if the current chain positions are co-planar or are
sufficiently clustered, mixing between chains can be
low, and infinite loops of identical repeated and re-
versed jumps can occur. For this reason, traditional
MCMC jumps are mixed into the proposal distribu-
tion. These moves use the total set of current points
in the proposal chains to infer a covariance matrix C.
The hop and blow moves use C to construct a Gaus-
sian proposal function and perform an MCMC jump
based on the resulting conditional PDF; hop centers
the proposal on the current point of the chain being
advanced, whereas blow centers it on the current
point of one of the proposal chains.

ScannerBit’s implementations of hop and blow
advance a chain some distance r in a chosen direc-
tion r̂ from the center of the proposal distribution.
Following [6], r is drawn from the distribution

P(r) = 2
3P2(r/d) + 1

3e
−r, (19)

where Pn(x) is the distribution of radii arising from
an n-dimensional normal distribution centred at the
origin, and d is the user-configurable Gaussian jump
parameter. The distance r is related to the hypercube
parameters θ via a Cholesky decomposition C =
LLT ,

θ′i = θk + rL · r̂. (20)

The starting point θk of the jump for the hop move
is the current point of the chain to be advanced,
whereas the starting point of the blow move is the
current point of any other advancing or proposal
chains.

In order to promote exploration of the parame-
ter space in scenarios where the best-fit regions are
highly degenerate in the parameters, T-Walk chooses
the direction of propagation r̂ by first choosing a
random orthonormal basis for the parameter space.
It then chooses r̂ in successive hop and blow moves
by cycling through the basis vectors in random order.
Once it has used all basis vectors once, it generates
a new random orthonormal basis.

T-Walk calculates C directly from the current
points of the proposal chains,

C =
∑
j

(
θ(j) − θ̄

) (
θ(j) − θ̄

)T
, (21)

where j indexes the proposal chains, and θ̄ gives the
mean current point across them. If this matrix is not
positive-definite, then T-Walk approximates it as

Cl,l =
(

max
j,k

[
θl(j) − θl(k)

])2
/12 (22)

where j and k run over all proposal chains.

ScannerBit’s implementation performs each walk and
traverse step within a randomly chosen subspace of lower
dimensionality, known as the projection subspace. This
encourages chain movement by avoiding a narrow dis-
tribution, which is endemic to higher-dimensional pro-
posal distributions. The relative probabilities of walk
and traverse moves are set equal, as are those of hop and
blow. The ratio of walk+traverse to hop+blow moves,
and the dimension of the projection subspace, are user-
configurable.

The version of the T-Walk algorithm described above,
and implemented in ScannerBit, differs slightly from the
original algorithm [39] in two ways. The first is the use
of the full concurrent covariance matrix for the Gaussian
jumps in the hop and blow moves, making them similar
to the “walk” move of Ref. [40]. Second, the algorithm
is formulated to work with any number of chains greater
than one, rather than just a pair (making the walk and

13

traverse moves described here similar to the “stretch”
move in Ref. [40]).

The version of T-Walk in ScannerBit uses the Gelman-
Rubin convergence diagnostic

√
R [41] to determine

convergence. This statistic compares the inter-chain
dispersion to the total dispersion of each parameter.

See Appendix B.3 for the available options and out-
puts of T-Walk.

9 Nested sampling

Nesting sampling is a method designed for efficient cal-
culation of the Bayesian evidence. As a byproduct, it
also produces samples from the posterior. The algorithm
samples the posterior in nested shells of probability, by
continually updating a set of “live” points, replacing
the lowest-likelihood live point in each iteration with a
better point. As the algorithm progresses, the set of live
points naturally splits into clusters that shrink around
the peaks of the posterior, making the algorithm well-
suited to efficiently sampling multimodal distributions.
MultiNest [17] is a Fortran library that implements the
nested sampling algorithm, with the addition of a cluster-
ing algorithm to estimate bounding ellipsoids for the the
live points. These bounding ellipsoids are used to approx-
imate the iso-likelihood contours of the function being
explored, allowing the algorithm to efficiently propose
new live points when scanning parameter spaces of low
to moderate dimension. For large dimensionalities the
MultiNest algorithm is computationally expensive, as the
bounding ellipsoids typically encompass large swathes
of uninteresting parameter space – but for small and
moderate-size parameter spaces it usually offers quite
competitive efficiency. The ScannerBit plugin runs the
MultiNest sampler developed by Feroz et. al. [17]. Its
options and outputs are listed in Appendix B.4.

10 Differential evolution

Differential evolution [42–45] (DE) is an efficient algo-
rithm for global optimisation, with similarities to both
genetic algorithms and the Nelder-Mead simplex method
[44]. It has been found to be quite robust, and is often the
algorithm of choice for for multimodal, high-dimensional
problems.

DE works by evolving a population of points in pa-
rameter space, with successive generations chosen by a
form of vector addition between members of the current
population. The vector addition step gives the algorithm
the character of a random walk with a step size provided
by the population. This makes it highly adaptive, and

~X1

~X2

~X3

~X4

~X5

~X6

~X7

~X8

~X9

~X10

Fig. 1: A simple example of differential evolution in two di-
mensions. This figure shows the likelihood function represented
by contours, and an initial random population of NP=10 vectors
{X0

i }. Subsequent figures illustrate the remaining steps of the
algorithm.

helps to limit the number and tuning of control param-
eters required. In its simplest form, DE requires only
three controlling parameters; this can be reduced even
further in variants that allow self-adaptation of parame-
ters. It is straightforward and efficient to parallelise, as
each member of the population can be simultaneously
and independently evaluated against a replacement can-
didate.

DE’s population-based mutation also leads to con-
tour matching [46], where members of a population will
tend to be at similar likelihood values, with the worst
individuals improving the fastest, allowing the algorithm
to trace out contours of the objective function rather
effectively. This not only allows good mapping of likeli-
hood contours, but further aids with adaptive stepping
from one generation to the next, and promotes transfer
of population members between local minima, improving
the overall convergence towards the global minimum.

10.1 Algorithmic details

All variants of DE consist of three main steps: mutation,
crossover, and selection. These are controlled by three
parameters: the population size NP , the mutation scale
factor F , and the crossover rate Cr. The simplest form
of DE, known as ‘rand/1/bin’, was first described in
1995 [42], and continues to be widely used. The first two
parts of the name refer to the strategy for mutation, and
the the third refers to the crossover; these are described
in detail below.

The algorithm begins by initialising the population
to a random selection of points within the allowed pa-
rameter space (Fig. 1). We will denote the population
of points (also referred to as target vectors) as {Xg

i },

14

~X1

~Xr2

~Xr1

~Xr3

~V1

Fig. 2: The process of creating the first donor vector during
mutation in the simple ‘rand/1’ variant of this step. The differ-
ence vector between two randomly chosen points is shown as a
dashed teal line, and the scaled difference vector (thick teal line)
is shown added to another randomly chosen point to create the
donor vector V1. Note that the current target vector X1 is not
used during rand/1 mutation. The scale factor in this example
is F=0.7.

with i indexing the members of the population, and g
indexing the generation. Each subsequent generation
of the population is chosen by performing mutation,
crossover and selection on the previous generation.

10.1.1 Mutation

The first step in DE is mutation, which will produce the
donor vectors {Vi} from the current population of target
vectors {X0

i }. This step is illustrated in Fig. 2. In the
rand/1 mutation scheme, a random vector is combined
with a single difference vector scaled by the mutation
scale factor F . To produce each donor vector Vi, three
random vectors Xr1, Xr2 and Xr3 are chosen from the
current population, such that none of the Xk are the
same, and none matches the current target vector Xi.
The vectors are then combined using vector addition to
produce the donor vector:

Vi = Xr1 + F (Xr2 −Xr3). (23)

This name rand/1 refers specifically to the fact that
the donor is formed by choosing a random base vec-
tor from the population, and vector-adding it to one
scaled difference vector between population members.
The combination of a single target vector (referred to as
the base vector) with a donor vector constructed from
scaled differences between other population members is
a general feature of DE. Further variants are detailed
in section 10.1.4.

The usage of this vector addition strategy allows
DE to explore a function dynamically, based on the size
and shape of the evolving population (which reflects

~X1

~V1

~Ua

~Ub

Fig. 3: Binomial crossover between the donor vector V1 and
the target vector X1 in rand/1/bin differential evolution. This
produces three possible trial vectors, shown in lightly-filled teal
circles. Because at least one component of the donor vector
always goes into the trial vector, but no components are guaran-
teed to come from the target vector, V1 is a possible trial vector
(in the case where both components have been taken from the
donor vector), as are Ua and Ub (where only one component
has been chosen from the donor vector). The target vector X1
itself is not a possible trial vector.

the size and shape of the contours of the objective
function). The value of F is the main determinant of
how broad this search is. In general, F is required to
be less than 1 for convergence to be achievable – but
too low a value can lead to insufficient exploration, and
premature convergence [46].

10.1.2 Crossover

The second step in DE is crossover, also called recombi-
nation. This is illustrated in Fig. 3. Crossover combines
the donor vectors produced by mutation with the orig-
inal population of target vectors to produce the trial
vectors Ui. The trial vectors will potentially form the
next generation of vectors. The degree to which the trial
vectors are composed of components of the donor vectors
rather than components of target vectors is influenced
by the parameter Cr, which takes a value between 0
and 1. In binomial crossover (the ‘bin’ of rand/1/bin
DE), the trial vector is chosen according to the following
procedure:

1. For the kth component of the trial vector Ui, denoted
Ui,k, a random number rk is chosen such that 0 <
r < 1.

2. If rk ≤ Cr, the component is taken from the donor
vector: Ui,k = Vi,k.

3. If rk > Cr, it is taken from the target vector instead:
Ui,k = Xi,k.

4. After all components of Ui have been chosen in this
fashion, one component is reassigned in order to

15

Fig. 4: The last step in a generation of differential evolution.
This shows the process of selection after trial vectors have been
chosen for the entire population. Each target vector is compared
with its associated trial vector, and the better one is retained
for the next generation. Here teal indicates trial vectors and
black indicates target vectors. Filled circles have been kept for
the next generation, whereas open circles have been rejected.
Note that several points have trial vectors outside the allowed
boundaries; these are rejected automatically.

ensure that trial vectors are always different from
their parent target vectors. A dimension l is cho-
sen randomly for each member of the population.
The corresponding component of the donor vector
is then assigned to the target vector: Ui,l = Vi,l,
irrespective of its previous value.

As Cr increases, the probability that components
are chosen from the donor vector increases: for many-
dimensional problems, the percentage of components
taken from the donor vector is approximately Cr (see
Ref. [47] for a full analysis). High values of Cr therefore
lead to increased exploration, as the trial vectors will
differ from the target vectors along many dimensions.
Low values of Cr are primarily effective for the spe-
cial case where the likelihood function is a separable
function of the parameters, because this allows the al-
gorithm to explore along individual dimensions [e.g. 46].
In the more general case, where the objective function
is non-separable, Cr should be kept high to allow bet-
ter exploration. A small amount of crossover with the
target vectors remains useful, however, as it improves
the diversity of the population of trial vectors [46].

10.1.3 Selection

The final step in DE is selection, which generates the
next population of vectors. This step is shown in Fig. 4.
The value of the objective function (typically the likeli-
hood) for each target vector Xg

i (the previous popula-
tion) is compared with the trial vector Ui constructed
from it using mutation and crossover. The point with

the better likelihood is retained as a member of the next
generation, and becomes one of the new target vectors
Xg+1
i . If both have the same likelihood, the trial vector

Ui is preferred, in order to allow the population to move
across flat surfaces.

Selection makes DE what is known as a greedy al-
gorithm: it takes any improvement offered, and never
accepts steps that would lead to a poorer fit. This al-
lows faster convergence, but unlike non-greedy sampling
methods (e.g. MCMCs), where poorer fits are some-
times accepted, discovery of the global minimum is not
guaranteed even for infinite running time.

It is possible for trial vectors to be located outside of
the allowed parameter space boundary. This is most com-
mon during the first few generations of the algorithm,
when the population is spread out, allowing very large
difference vectors to be produced. However, if a local or
global minimum is located near the edges of parameter
space, out of bounds vectors can occur throughout the
minimisation process. The simplest way to enforce pa-
rameter boundaries is to reject any trial points that lie
outside them; for alternatives see Sec. A.2.

10.1.4 Advanced mutation and crossover strategies

Although rand/1/bin DE is simple and popular, many
other variants have been proposed. The simplest vari-
ations involve either a different choice of base vector,
or a different method to calculate the difference vector.
The name of the DE strategy is typically written in the
form base/difference number/crossover, where

base: how the base vector, Xr1 in equation (23) and
Fig. 2, is chosen for mutation.

difference number: the number of difference vectors
F (Xr2 −Xr3) in equation (23) and Fig. 2 that are
used in mutation.

crossover: the form of crossover used.

Some options for the base vector beyond a random choice
from the population include the current target vector
(‘current’), the best vector in the population (‘best’), or
a base vector made up of a combination of these (e.g.
‘rand-to-best’).

A ‘general’ mutation strategy encompassing several
possible mutation strategies can be written as follows
[48]:

Vi = λXbest + (1− λ)X1 +
Q∑
q=0

Fq(X2q
−X3q

), (24)

where X1 is the current vector or is chosen randomly as
before and X2,3 are chosen randomly from the popula-
tion. No vectors may be used twice. This form allows

16

rand base vectors (X1 = Xrand and λ = 0), current
base vectors (X1 = Xi and λ = 0), best base vectors
(λ = 1), rand-to-best base vectors (X1 = Xrand and
0 < λ < 1), and current-to-best base vectors (X1 = Xi

and 0 < λ < 1). It also allows for the use of Q difference
vectors along with a corresponding set {Fq} of scale
factors. Note that there are other forms of mutation
that are not described by this equation.

Using the best individual in the population as the
base vector (e.g. best/1/bin) speeds up convergence, as
it reduces stagnation in the population – but it makes
DE less likely to find the global minimum compared
to simply choosing the base randomly. This tends to
be a good choice for near-unimodal functions, but poor
for highly multimodal functions [46, 49]. Using the cur-
rent vector as the base can slow convergence because
it reduces the diversity of the resulting population [46],
but can be more efficient than randomly choosing the
base because it reduces so-called ‘selection drift bias’
[45]. Combining multiple difference vectors can help
combat the loss of diversity induced by using either the
best or current vector as the base, but may hamper
contour-matching [46].

In contrast to the proliferation of mutation strategies,
binomial crossover has only one main competitor, expo-
nential crossover (‘exp’). The lack of additional recipes
is mostly a result of the lesser impact of crossover on per-
formance than mutation [50]. Exponential crossover was
used in the original DE algorithm [42], but is generally
less popular than binomial crossover.

In exponential crossover, a length L to be crossed
over is chosen by drawing random numbers between 0
and 1 until one of them exceeds Cr. L is then set to
the total number of draws required, with the provision
that it must be less than the dimensionality of the
parameter space D. A random dimension d is then
chosen from [1, D], and the next L entries in the donor
vector (wrapping around to the first if necessary) are
chosen to contribute to the trial vector. The remaining
D − L components are taken from the target vector.

Exponential crossover is generally considered to per-
form less well than binomial crossover. This has been
suggested [49] to be due to the requirement in expo-
nential crossover that dimensions taken from the target
vector must be adjacent, whereas in binomial crossover
all combinations are possible. Both forms of crossover
suffer from the fact that the process is not rotation-
ally invariant, as it preferentially acts along dimensions,
and therefore cannot perform identically on separable
and inseparable functions, decreasing efficiency when
working with parameterisations that induce correlations
between parameters [46, 50]. This is a common feature

of evolutionary algorithms, including e.g. genetic algo-
rithms.

10.1.5 Self-adaptive differential evolution

As with all optimisation strategies, the ideal choice of
parameters for DE depends on the type of problem
to be solved, and is frequently unclear a priori. The
ability for the algorithm to adapt its parameters in
real time is therefore advantageous. One example of
self-adaptive differential evolution is known as jDE [51],
which compares favourably with classic DE and other
modifications of DE across problem types and in high-
dimension parameter spaces [44, 52].

The jDE algorithm is based on classic rand/1/bin
DE but adapts the values of F and Cr as the run pro-
gresses. Each vector in the population is associated with
personal values of F and Cr, which are then used to
generate the next generation of vectors. Before mutation
occurs for the ith member of the population, Fi has a
chance to change. The same is true of Cri immediately
before crossover. During selection, the values of F and
Cr belonging to successful vectors are retained in the
next generation of the population. Variants on the jDE
algorithm can extend the self-adaptive behaviour to
other mutation or crossover strategies. We introduce
one such variant, λjDE, which dynamically modifies λ
in a similar way over the course of the run. We describe
the jDE and λjDE algorithms, as well as our imple-
mentations and variations of them, in greater detail in
section 10.2.2.

10.2 The Diver package

In this section, we introduce Diver, an open-source differ-
ential evolution sampler intended for use in optimisation
problems in physics and astronomy. Diver can be down-
loaded either as a source tarball or a git repository
from http://diver.hepforge.org. It is released under an
academic use license.

10.2.1 Design and invocation

Diver is a fully-featured, standalone parallel implementa-
tion of differential evolution. Its default mode is to
perform self-adaptive λjDE optimisation, with jDE,
rand/1/bin and all mutation and crossover strategies in
between available through an extensive set of runtime op-
tions. It also includes additional options for outputting
derived parameters, stopping and restarting scans, com-
puting approximations to various Bayesian quantities,
and dealing with discrete parameters.

http://diver.hepforge.org

17

Diver is written in Fortran, and includes wrappers
for calling it from C/C++. It is compatible with gcc
4.4 and later, and version 11 and later of the intel com-
piler suite. Parallelism in Diver makes use of MPI, and
works by simply dividing each generation up evenly
across all MPI processes. It is invoked by calling the For-
tran function diver() or its C equivalent cdiver() from
some user-supplier driver program. When calling these
functions, the driver program must pass the address
of another, user-supplied, likelihood/objective function,
which Diver then minimises. The package includes exam-
ple driver programs and objective functions in Fortran,
C and C++; these can be respectively found in the
example_f, example_c, and example_cpp subdirectories of
the main Diver installation directory.

Synopses of the different source files in Diver, the
various run options it offers, and the format of its out-
puts can be found in Appendices A.1, A.2 and A.3,
respectively.

10.2.2 Adaptive differential evolution: jDE and λjDE

We include two options to use self-adaptive evolution,
based on the jDE algorithm initially proposed by Brest
et al. [51]. In regular jDE (accessed by setting jDE =
true), rand/1/bin evolution is used, but each vector has
unique values for F and Cr, which evolve along with
the population.

The evolution of F is controlled by a value τ1, which
we take to be 0.1 throughout. The permissible range for
F extends from Fl = 0.1 to Fu = 0.9, as values of F
too close to zero imply no evolution, whereas values too
close to 1 prevent convergence. We choose the initial
value of F for each vector randomly from a uniform
distribution between Fl and Fu. Before mutating the
the vectors, we draw a random number and compare it
to τ1. If it less than τ1, we update F to a new random
value between Fl and Fu, and the new value is used
for mutation. Then, during selection, if the trial vector
is accepted, the new value for F is kept as well. If the
trial vector is rejected, the previous value for F is kept
instead.

Similarly, the evolution of Cr is controlled by a
value τ2, also taken to be 0.1. Unlike F , Cr is allowed
to vary between 0 and 1 inclusive, as crossover does
not exhibit any pathological behaviour in either limit.
For each member of the population, we initialise Cr to
a random value between 0 and 1. For each generation,
before crossover we then choose a trial value for Cr. As
for F , we draw a uniform random deviate and compare
it to τ2; if it is larger than τ2, the trial value for Cr
remains unchanged; if it is smaller, we choose a random
new value for Cr and use it during crossover. During

selection, if the trial vector is kept, the new crossover
parameter is kept as well; if not, the value of Cr reverts
to the previous value.

The justification for this process is that different
values of F and Cr are useful for different classes of
problems, but the preferred values are usually not known.
It is presumed that successful choices of F or Cr are
more likely to lead to successful trial vectors, and so
by tying the evolution of F and Cr to the evolution
of the vectors, desirable values of F and Cr will be
preferentially propagated.

In addition to the standard jDE, we offer the possi-
bility to use self-adaptive rand-to-best/1/bin evolution.
This works just as in jDE, but with the addition of
an adaptive λ mutation parameter, which evolves via
a scheme that mirrors the way Cr is evolved. The ad-
dition of this parameter harnesses the benefits of jDE,
while allowing for more aggressive optimisation, since
information about the position of the best member of
the current generation is used. This option is accessed
by setting lambdajDE = true.

10.2.3 Discrete parameters and parameter-space parti-
tioning

Diver offers the ability to label one or more parameters
as discrete rather than continuous, using the discrete
keyword. This may be desirable because some param-
eter(s) are indeed discrete at some fundamental level,
or simply as a means of labelling a set of individual fits
that are interrelated in some way.

The main complication when working with discrete
parameters is that mutation must be a floating-point
operation in DE, in order to ensure that the donor
vectors are valid, to allow for enough variety in potential
donor vectors, and to ensure proper convergence. When
treating a parameter as discrete in Diver, we deal with
this by storing the values of the discrete parameter
internally as floating-point values, so that mutation
works as normal, but evaluation of the likelihood is
done by rounding the parameter to the closest integer.
The output .raw file stores the underlying floating-point
representation of the parameters (to allow runs to be
properly resumed), whereas the desired integer values
are output in a .sam file (we discuss output formats in
more detail in Appendix A.3).

The partitionDiscrete option can also be used to
partition the DE population evenly into the allowed
values of the discrete parameters. With this option,
no vector is allowed to change its discrete value. This
mode allows simultaneous fitting of multiple objective
functions, with the discrete dimension simply treated
as a label for assigning subpopulations to the different

18

problems. One useful application of this option is to
perform multi-objective optimisation where the value of
each fitness function depends (preferably only weakly)
on the best-fit parameters of the other subpopulations.

10.2.4 Population diversity and duplicate individuals

In order for DE to converge appropriately, it is necessary
to retain sufficient population diversity. Duplicate vec-
tors in the population lead to artificial drops in diversity.
Duplicate vectors can arise naturally in rand/ or best/
mutation if two separate vectors in the population are
updated using the same combination of random vectors.
Once there are multiple identical vectors in a population,
the diversity of the population will decrease, making
premature convergence more likely.

Even more problematically, duplicate vectors have a
tendency to infect the rest of the population: whenever
a pair of duplicates is chosen to create the difference
vector during mutation, the resulting donor vector will
match the third vector chosen, possibly creating another
duplicate. In best/ mutation, such a process can rapidly
lead to an entire population matching the ‘best’ vector.

Diver includes a facility for weeding out duplicate
vectors as soon as they arise to prevent these problems.
When removeDuplicates = true, the population is exam-
ined after selection. If a set of duplicates is discovered,
one is modified, according to the following rules:

1. If one vector was inherited from the previous genera-
tion, and the other is new, the new vector is reverted
to its previous value.

2. If both vectors are new, the one that improved the
most is kept and the other is reverted to its previous
value.

3. The appearance of duplicate vectors in the initial
population, or inheritance of multiple copies of the
same vector from a previous generation, are strong
indications of coding errors. In these cases, a warning
is printed and one vector is re-initialised to a random
point in the parameter space.

Duplicate removal is disabled by default for current/
mutation (current = true), jDE (jDE = true), and λjDE
(lambdajDE = true), as the presence of duplicates in the
results of these algorithms would be surprising. It is en-
abled by default for all other settings, i.e. rand/, best/,
or rand-to-best/ mutation, as these forms of mutation
are susceptible to duplicate creation. If Diver is com-
piled with MPI support, duplicate removal is enabled by
default regardless of any other settings, and is recom-
mended as a useful diagnostic for insuring against MPI
library issues.

10.2.5 Approximate posterior and evidence estimates

Diver can compute the Bayesian posterior and evidence
from its samples when using a negative log-likelihood
function as the objective, by using the likelihood sam-
ples to perform Monte Carlo integration of the (prior-
weighted) likelihood. These calculations can be activated
by setting doBayesian = true and specifying a prior func-
tion.

Because DE does not share the property of Bayesian
algorithms that the sampling distribution is proportional
to the posterior, this requires a bootstrap estimate of the
actual sampling distribution produced in a DE run. This
invariably leads to fairly rough estimates of Bayesian
quantities, especially when the likelihood function is
multimodal and/or highly non-Gaussian, but the results
can be useful for some quick estimates before deploy-
ing more expensive algorithms optimised for Bayesian
inference.

Diver obtains a bootstrap estimate of its sampling
density by performing a binary space partitioning on
the parameter space being scanned, using the actual
samples obtained in a scan. Each sample is sorted into
a cell in the partitioned parameter space, with cells
partitioned further as soon as their populations exceed
maxNodePop. The partitioning is done alternately in each
direction of the parameter space, so that each cell re-
mains rectangular in the parameters.

The resulting posterior weight for a sample θ can
then be estimated as

P (θ) ≈ Nc

Ns
V (θ)Π(θ)L(θ), (25)

where Nc is the number of cells, Ns the total number of
samples, V (θ) is the parameter volume occupied by the
cell containing the sample θ, Π(θ) is the prior function
(provided explicitly by prior – note that this is not
the prior transform, but the prior itself), and L(θ) is
the likelihood, i.e. exp(−x), where x ≡ − lnL is the
objective function being sampled. The corresponding
Monte Carlo estimate of the Bayesian evidence is then

Z ≈
Ns∑
i=1

P (θi). (26)

Taking the estimate to be Gaussianly distributed, the
1σ uncertainty on the evidence can be approximated
from its variance,

∆Z ≈
√

(〈P 2〉 − Z2)/Ns, (27)

where

〈P 2〉 ≡ 1
Ns

Ns∑
i=1

P 2(θi) (28)

19

is the mean square posterior.
If doBayesian = true, Diver will continue to sample

until the logarithmic uncertainty on Z reaches or passes
below Ztolerance, i.e.

ln
(

Z
Z −∆Z

)
≤ Ztolerance. (29)

Once this convergence criterion has been satisfied, Diver
then further polishes its posterior and evidence estimates
by taking the final binary spanning tree so generated
during the scan, and re-calculating Eq. 25 for each in-
dividual of every population. This improves the final
posterior and evidence estimates because the resulting
weights for all individuals get computed on the basis of
the complete tree, rather than the tree as it was at the
time each individual was initially created.

10.2.6 ScannerBit interface

Because Diver is specifically designed to minimise
positive-definite fitness functions, the Diver plugin for
ScannerBit uses the negative of the composite log-
likelihood function provided by GAMBIT as its fitness
function. If desired, ScannerBit will also apply an offset
to the log-likelihood passed to Diver, and have the printer
remove that offset again before printing. This can be
useful in cases where the likelihood normalisation leads
to positive total log-likelihoods; taken without an offset,
these likelihoods would prevent the fitness passed to
Diver from remaining positive definite. The offset can be
specified with the lnlike_offset option in the likelihood
node of the KeyValues section of a run’s main YAML file.
If this option is absent, the offset will default to 10−4

times the value of model_invalid_for_lnlike_below (also
in KeyValues::likelihood). The full range of Diver op-
tions available from the YAML file is given in Appendix
B.5.

The Diver interface in ScannerBit does not yet make
use of the ability of Diver to scan discrete parameters,
as doing so is not yet supported by ScannerBit itself;
this feature is slated for inclusion in a future revision of
GAMBIT.

11 Scanner performance comparisons

By offering the capacity to vary the scanning algorithm
and its operating parameters — whilst keeping all other
aspects of a scan identical — ScannerBit provides a
unique testbed for comparing sampling algorithms. In
this section we present an exploration of the performance
of the four major scanners available in GAMBIT 1.0.0,
when applied to a physically realistic likelihood function.

The modularity of the scanner interface allows consistent
comparison between both the algorithms themselves,
and between different choices of algorithm parameters.

This investigation is intended to reveal the strengths
and weaknesses of different sampling algorithms with
respect to typical user requirements. These requirements
can be quite varied, and may include the choice of
statistical approach (frequentist or Bayesian), the time
taken for a scan to converge, the reliability of the results,
or some combination of the three. However, for any
thorough investigation, the user should typically take
advantage of the unique flexibility offered by ScannerBit
to employ a range of algorithms, statistical methods,
and scanner parameters in order to obtain the most
complete and robust sampling possible.

For this demonstration, we work with the scalar sin-
glet dark matter model. This model has two parameters
beyond the Standard Model (SM): the Higgs portal cou-
pling λhS, and the singlet Lagrangian mass parameter
µS . It also includes 13 nuisance parameters. We present
the results in the effective parameter space of λhS and
mS, where the physical singlet mass mS is a function
of λhS and µS . The likelihood and posterior are both
multimodal and highly degenerate across several orders
of magnitude in the values of these parameters. More
details on the model can be found in accompanying and
earlier papers [27, 34, 53–60]. Here our test function
consists of the same likelihood components as in Ref.
[34]. Although this is a simple, well-studied extension
of the SM, the parameter space is still sufficiently non-
trivial that it constitutes an illustrative test of scanner
performance.

To investigate how performance scales with dimen-
sionality, we conduct tests with different constrained ver-
sions of the scalar singlet model. In particular, we carry
out detailed tests in two, seven and fifteen dimensions,
and one scan with each sampler for dimensionalities
between two and fifteen. We list the free parameters
for each scan in Table 1. For all test scans, we apply a
logarithmic prior to the singlet parameters λhS and mS,
and flat priors to the nuisance parameters.

In Secs. 11.1–11.4 we discuss the most appropriate
choices of settings for MultiNest, Diver, T-Walk and
GreAT, respectively. In order to make comparisons, we
require fair metrics with which to compare the outcomes
of scans. We first look at the best value of the log-
likelihood found in each scan, which is crucial for the
correct normalisation of the profile likelihood (Figs. 5,
6, 10 and 13). The results of this test favour algorithms
primarily intended as optimisers, whilst disadvantaging
those mainly designed to map the likelihood function or
posterior. We therefore also compare the visual quality
of the profile likelihood maps (Figs. 7, 9, 11 and 14),

20

0.0 0.2 0.4 0.6 0.8 1.0
Convergence tolerance

0.0

0.2

0.4

0.6

0.8

1.0

lo
g(
L)

B
F

10−4 10−3 10−2 10−1

4.555

4.560

4.565

4.570

Working pts. = 2000

10−4 10−3 10−2 10−1

Workings pts. = 5000

10−4 10−3 10−2 10−1

Workings pts. = 10, 000

10−4 10−3 10−2 10−1

Workings pts. = 20, 000

Diver
MultiNest

MultiNest & Diver - 2 dimensional scans

0.0 0.2 0.4 0.6 0.8 1.0
Convergence tolerance

0.0

0.2

0.4

0.6

0.8

1.0

lo
g(
L)

B
F

10−4 10−3 10−2 10−1

4.40

4.45

4.50

4.55

Workings pts. = 2000

Diver
Multinest

10−4 10−3 10−2 10−1

Workings pts. = 5000

10−4 10−3 10−2 10−1

Workings pts. = 10, 000

10−4 10−3 10−2 10−1

Workings pts. = 20, 000

MultiNest & Diver - 7 dimensional scans

0.0 0.2 0.4 0.6 0.8 1.0
Convergence tolerance

0.0

0.2

0.4

0.6

0.8

1.0

lo
g(
L)

B
F

10−4 10−3 10−2 10−1
3.4

3.6

3.8

4.0

4.2

4.4

Workings pts. = 2000

10−4 10−3 10−2 10−1

Workings pts. = 5000

10−4 10−3 10−2 10−1

Workings pts. = 10, 000

10−4 10−3 10−2 10−1

Workings pts. = 20, 000

Diver
MultiNest

MultiNest & Diver - 15 dimensional scans

Fig. 5: Best-fit log-likelihoods in scans of the scalar singlet space using the Diver and MultiNest scanners, for a range of convergence
tolerances and a fixed number of working points. Tolerances correspond to the parameter tol for MultiNest and the parameter
convthresh for Diver. Working points correspond to the parameter Nlive for MultiNest and the parameter NP for Diver. Note that
the likelihood is dimensionful, leading to LBF > 1 [27].

and the corresponding posterior maps (Figs. 8, 12 and
15). This is a more qualitative approach, better suited
for algorithms intended to explore the parameter space.

We also make some additional comparisons between
the four sampling algorithms. In the first two of these
tests, we are interested in the relative performance as a
function of parameter space dimensionality (Sec. 11.5)
and the total CPU time required to complete a scan (Sec.
11.6). Here, we focus mostly on the value of the best-fit
log-likelihood and the time taken to achieve it. These
sections are most relevant for evaluating profile likeli-

hood performance; in Sec. 11.7, we instead focus on the
specific merits of different algorithms for mapping the
Bayesian posterior. We discuss the overall implications
of these results in Sec. 11.8.

We performed all tests using a high-performance
computing cluster, taking advantage of the ability to
run GAMBIT in parallel across multiple processors. In
the interests of making sensible use of computing re-
sources and time, we ran the two-dimensional scans
on a single 24-core compute node, using 24 MPI pro-
cesses. For the seven- and fifteen-dimensional scans, we

21

0.0 0.2 0.4 0.6 0.8 1.0
Workings points

0.0

0.2

0.4

0.6

0.8

1.0

lo
g(
L)

B
F

103 104 105

4.555

4.560

4.565

4.570

Convergence tol. = 10−1

103 104 105

Convergence tol. = 10−2

103 104 105

Convergence tol. = 10−3

103 104 105

Convergence tol. = 10−4

Diver
MultiNest

MultiNest & Diver - 2 dimensional scans

0.0 0.2 0.4 0.6 0.8 1.0
Workings points

0.0

0.2

0.4

0.6

0.8

1.0

lo
g(
L)

B
F

103 104 105

4.40

4.45

4.50

4.55

Convergence tol. = 10−1

103 104 105

Convergence tol. = 10−2

103 104 105

Convergence tol. = 10−3

103 104 105

Convergence tol. = 10−4

Diver
MultiNest

MultiNest & Diver - 7 dimensional scans

0.0 0.2 0.4 0.6 0.8 1.0
Workings points

0.0

0.2

0.4

0.6

0.8

1.0

lo
g(
L)

B
F

103 104 105
3.4

3.6

3.8

4.0

4.2

4.4

Convergence tol. = 10−1

103 104 105

Convergence tol. = 10−2

103 104 105

Convergence tol. = 10−3

103 104 105

Convergence tol. = 10−4

Diver
MultiNest

MultiNest & Diver - 15 dimensional scans

Fig. 6: Best-fit log-likelihoods in scans of the scalar singlet space using the Diver and MultiNest scanners, for different numbers of
working points and fixed convergence tolerances. Working points correspond to the parameter Nlive for MultiNest and the parameter
NP for Diver. Tolerances correspond to the parameter tol for MultiNest and the parameter convthresh for Diver. Note that the
likelihood is dimensionful, leading to LBF > 1 [27].

GAMBIT 1.0.0

−3

−2

−1

0

lo
g 1

0
λ

h
S

2.0 2.5 3.0 3.5
log10(mS/GeV)

MultiNest
nlive: 20,000
tol: 0.0001
Prof. likelihood

GAMBIT 1.0.0

−3

−2

−1

0

2.0 2.5 3.0 3.5
log10(mS/GeV)

MultiNest
nlive: 20,000
tol: 0.01
Prof. likelihood

GAMBIT 1.0.0

−3

−2

−1

0

2.0 2.5 3.0 3.5
log10(mS/GeV)

MultiNest
nlive: 5,000
tol: 0.001
Prof. likelihood

GAMBIT 1.0.0

−3

−2

−1

0

P
rofile

likelihood
ratio

Λ
=
L

/L
m

a
x

2.0 2.5 3.0 3.5
log10(mS/GeV)

0.2

0.4

0.6

0.8

1.0

MultiNest
nlive: 2,000
tol: 0.001
Prof. likelihood

Fig. 7: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet parameter space, using the MultiNest scanner
with a selection of difference tolerances (tol) and numbers of live points (nlive).

22

GAMBIT 1.0.0

−3

−2

−1

0

lo
g 1

0
λ

h
S

2.0 2.5 3.0 3.5
log10(mS/GeV)

MultiNest
nlive: 20,000
tol: 0.0001
Marg. posterior

GAMBIT 1.0.0

−3

−2

−1

0

2.0 2.5 3.0 3.5
log10(mS/GeV)

MultiNest
nlive: 20,000
tol: 0.01
Marg. posterior

GAMBIT 1.0.0

−3

−2

−1

0

2.0 2.5 3.0 3.5
log10(mS/GeV)

MultiNest
nlive: 5,000
tol: 0.001
Marg. posterior

GAMBIT 1.0.0

−3

−2

−1

0 R
elative

probability
P

/
P

m
a
x

2.0 2.5 3.0 3.5
log10(mS/GeV)

0.2

0.4

0.6

0.8

1.0

MultiNest
nlive: 2,000
tol: 0.001
Marg. posterior

Fig. 8: Marginalised posterior probability density maps from a 15-dimensional scan of the scalar singlet parameter space, using the
MultiNest scanner with a selection of difference tolerances (tol) and numbers of live points (nlive). Note that the colourbar strictly
only applies to the rightmost panel, and that colours map to the same enclosed posterior mass on each plot, rather than to the
same iso-posterior density level (i.e. the transition from red to purple is designed to occur at the edge of the 1σ credible region, and
so on).

Table 1: Parameters, ranges and central values of the test
scans of this section, for each scan dimensionality. The ranges
for most SM parameters correspond to ±3σ variations around
the 2014 PDG central values [61]. For the Higgs, the range is
±4σ about the 2014 central value (which encompasses the 2015
4σ range [62]). For the up and down quark masses, we take the
central values from the 2014 review, and apply an uncertainty
of ±20%, designed to encompass the approximate 3σ range of
correlated uncertainties associated with the mass ratio likeli-
hoods implemented in PrecisionBit [30]. The nuclear couplings
also incorporate a range of ±3σ around the best estimates. The
dark matter density has an asymmetric range about the central
value, as the likelihood we apply to this parameter is log-normal
rather than Gaussian. Detailed references for the central values
and uncertainties of the local density and nuclear parameters
can be found in Refs. [34, 55].

Parameter Values
Scalar pole mass mS [45, 104]GeV
Higgs portal coupling λhS [10−4, 10]

Varied in 7 and 15-dimensional scans

Electromagnetic coupling 1/αMS(mZ) 127.940(42)
Strong coupling αMS

s (mZ) 0.1185(18)
Top pole mass mt 173.34(2.28)GeV
Higgs pole mass mh 125.7(1.6)GeV
Local dark matter density ρ0 0.4+0.4

−0.2 GeVcm−3

Varied in 15-dimensional scans

Nuclear matrix el. (strange) σs 43(24)MeV
Nuclear matrix el. (up + down) σl 58(27)MeV
Fermi coupling × 105 GF,5 1.1663787(18)
Down quark mass mMS

d (2GeV) 4.80(96)MeV
Up quark mass mMS

u (2GeV) 2.30(46)MeV
Strange quark mass mMS

s (2GeV) 95(15)MeV
Charm quark mass mMS

c (mc) 1.275(75)GeV
Bottom quark mass mMS

b (mb) 4.18(9)GeV

used 10 nodes, for a total of 240 MPI processes. For
the scans where we compare performance with respect
to dimensionality, a consistent computing environment
is required; here we used 5 nodes for all scans, corre-
sponding to 120 MPI processes.2 The two-dimensional
profile likelihood and marginalised posterior maps that
we show in the following subsections were produced with
pippi [63], using 150 bins in each dimension.

11.1 MultiNest

MultiNest’s ability to accurately evaluate the evidence
and map the posterior is directly affected by the number
of live points used in a scan, with more live points in-
creasing the chance of finding all relevant modes of the
posterior. On the other hand, more live points means
more likelihood evaluations, and requires greater com-
puting resources. The overall duration of the scan is also
influenced by the stopping criterion, which is given by
the tolerance on the final evidence (the estimate of the
largest evidence contribution that can be made with the
remaining portion of the posterior volume). The sam-
pling parameters that we vary are therefore the number
of live points (Nlive, nlive) and the tolerance (tol).

We perform runs with 2000, 5000, 10 000 and 20 000
live points, and tolerances of 10−4, 10−3, 10−2 and 10−1.
The values of the best-fit log-likelihoods achieved for
scans using these parameters are shown in Figs. 5 and 6.
In Fig. 7, we present a selection of the profile likelihoods
from MultiNest scans in the full 15-dimensional parame-
ter space; in Fig. 8 we give corresponding marginalised
posterior maps.
2Although GAMBIT is also able to use OpenMP threads for
further (likelihood-level) parallelisation within individual MPI
processes [27], here we limit ourselves to distributed-memory par-
allelisation with MPI, seeing as this is the form of parallelisation
employed by the scanning algorithms.

23

We see consistent best fits from all scans when tol ≤
10−3. A sufficiently small tolerance appears to provide a
good best-fit value over a large range of nlive values. On
the other hand, even with larger values of nlive, setting
tol too large will still negatively impact the quality of
the best-fit point; even with 20 000 live points we still see
a poor best-fit likelihood if the tolerance is greater than
10−3. The number of live points has a more significant
impact on the sampling of the parameter space, as can
be seen in Figs. 7 and 8. In these plots, a significant
difference in the quality of both profile likelihood and
posterior sampling is evident even between runs done
with 2000 and 5000 live points.

On the basis of these results, we recommend an upper
bound on the tolerance of 10−3 if MultiNest is to be
relied upon for obtaining the appropriate normalisation
for profile likelihoods. The number of live points required
will depend on the desired quality of the resultant profile
likelihood or posterior contours, and the dimensionality
of the parameter space. In Fig. 7, it is clear that in
fifteen dimensions a value of at least 20 000 for nlive
is required to give fine-grained sampling of the profile
likelihood. Because in most cases one is interested in a
global fit over many parameters, we recommend a value
of 20 000 live points as the lower limit. We note however
that this may be reduced somewhat if dealing with a
lower-dimensional parameter space, or if one is only
interested in mapping the posterior at a lower resolution
(less bins) than we have employed here.

11.2 Diver

Diver is a differential evolution optimisation package that
is also highly effective at sampling parameter spaces.
The size of the evolving population is determined by
the NP parameter, and the threshold for convergence is
controlled by the convthresh parameter.

We examine population sizes of NP = 2000, 5000,
10 000 and 20 000, and convthresh values of 10−4, 10−3,
10−2 and 10−1. Although these parameters have differ-
ent definitions to nlive and tol in MultiNest, we take
advantage of the similarity in the appropriate ranges for
these and plot the scan results on the same axes in Figs.
5 and 6. We see that a convthresh value of less than 10−3

gives consistent results for the best-fit log-likelihood at
all values of NP.

In two dimensions, both MultiNest and Diver are able
to find roughly the same or equivalently good best-fit
points. The differences in the algorithms become evident
in seven and fifteen dimensions however, where Diver
consistently outperform MultiNest for equivalent param-
eter values. This is somewhat expected, given that Diver

is designed as an optimisation routine, whereas Multi-
Nest is intended to compute the Bayesian evidence and
sample the posterior distribution. In two dimensions, the
sampling is dense enough that MultiNest has been able
to locate the best-fit point, but in higher dimensions the
task is more suited to an optimisation-specific routine.
We return to this discussion in Sec. 11.8.

In Fig. 9, we investigate the ability of Diver to accu-
rately map the contours of the profile likelihood. We see
that both the convthresh and NP settings are relevant in
reproducing the desired contours. A convthresh of 10−3

appears appropriate in fifteen dimensions, along with an
NP value of at least 20 000. However, these requirements
become less stringent in a lower-dimensional parameter
spaces (data not shown), where they can be reduced by
at least an order of magnitude whilst still achieving a
suitable mapping of the profile likelihood.

From these tests, we recommend similar settings
as for MultiNest for similar parameters: for a detailed
picture of the profile likelihood a value of 20 000 is rec-
ommended for NP (although this can be reduced for lower
dimensional parameter spaces), and to consistently find
the best-fit point an upper bound of 10−3 is recom-
mended for the convthresh convergence tolerance.

11.3 T-Walk

T-Walk is an ensemble MCMC algorithm. The primary
parameters of interest are the number of chains used
during the scan and the stopping criterion. The lat-
ter is controlled by the parameter sqrtR, which is the
square root of the Gelman-Rubin R statistic, where 1
is perfect. For comparison with other scanners, we de-
fine the equivalent tolerance of T-Walk scans as tol ≡
sqrtR − 1. The chain_number is bounded below by 1 +
projection_dimension + the number of MPI processes in
use (see Sec. B.3). For two dimensions, we have a lower
limit of 27 (24 + 2 + 1), and therefore perform tests with
27, 54, 81 and 108 chains. For higher-dimensional scans,
the increase in the number of MPI processes requires
larger chain numbers, so we choose 256 and 512. We
consider tol values of 0.3, 0.1, 0.03 and 0.01.

The best-fit log-likelihoods from scans using various
T-Walk settings are given in Fig. 10. In two dimensions,
we hold the tolerance fixed and investigate the effect of
varying the chain number. We see no notable trend with
chain number, for either of the tolerance values. For
the seven and fifteen-dimensional scans, we therefore
instead focus on varying the tolerance for a fixed num-
ber of chains. This reveals the expected trend: smaller
tolerances result in improvements to the best-fit log-
likelihoods. A significant improvement seems to occur
when tol . 0.1. We also notice no significant difference

24

GAMBIT 1.0.0

−3

−2

−1

0

lo
g 1

0
λ

h
S

2.0 2.5 3.0 3.5
log10(mS/GeV)

Diver
NP: 20,000
convthresh: 0.0001
Prof. likelihood

GAMBIT 1.0.0

−3

−2

−1

0

2.0 2.5 3.0 3.5
log10(mS/GeV)

Diver
NP: 20,000
convthresh: 0.01
Prof. likelihood

GAMBIT 1.0.0

−3

−2

−1

0

2.0 2.5 3.0 3.5
log10(mS/GeV)

Diver
NP: 10,000
convthresh: 0.001
Prof. likelihood

GAMBIT 1.0.0

−3

−2

−1

0

P
rofile

likelihood
ratio

Λ
=
L

/L
m

a
x

2.0 2.5 3.0 3.5
log10(mS/GeV)

0.2

0.4

0.6

0.8

1.0

Diver
NP: 5,000
convthresh: 0.001
Prof. likelihood

Fig. 9: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet parameter space, using the Diver scanner with
a selection of difference convergence thresholds (convthresh) and population sizes (NP).

between the scans with 256 and 512 chains, consistent
with what we saw in the two-dimensional scans.

In Fig. 11, we show a selection of profile likelihood
maps of the 15-dimensional scalar singlet parameter
space. We immediately see that smaller tolerances are
preferable for a detailed sampling, and doubling the
number of chains has no notable impact on the quality
of the sampling. In Fig. 12, we show a selection of the
marginalised posterior maps of the 15-dimensional scalar
singlet parameter space achieved by T-Walk. Here we
see that whilst the main posterior modes appear to be
better explored with smaller values of tol, leading to
smoother, better-converged posterior contours, the pres-
ence of the minority mode at low mass would seem to be
more evident in scans using a higher tolerance. This may
appear counter-intuitive; why should poorer sampling
apparently do better at uncovering small regions such
as this? In reality, this region has been sampled more
carefully in the scans with lower tol values, despite ap-
pearing less prominently in the posterior maps. That the
sampling in these regions is better at lower tolerances
can be seen from Fig. 11, where lower tolerances pick
up better-fit points in this region. Nevertheless, the ad-
ditional samples retrieved in runs with lower tolerances
provide a steadily more accurate indication of relative
posterior weights of each of these modes, gradually lead-
ing to the low-mass solution to become reweighted and
disfavoured in the better-sampled posterior maps of Fig.
12.

Recommending parameters for the T-Walk algorithm
is difficult, due to the sensitivity of the convergence to
the tol = sqrtR − 1 parameter. However, values less
than ∼0.1 appear to be safe for the scans we have
conducted here. Increasing the number of chains above
the minimum value does not appear to result in any
improvement in the quality of the best-fit, nor in the
overall sampling. As starting values for a study using the
T-Walk scanner, we therefore recommend setting tol <
0.1 and leaving chain_number at the default (minimum)
value.

0.0 0.2 0.4 0.6 0.8 1.0

Number of chains (Nchains)

0.0

0.2

0.4

0.6

0.8

1.0

lo
g
(L

) B
F

27 54 81 108

4.550

4.555

4.560

4.565

Convergence tol. = 0.01

27 54 81 108

Convergence tol. = 0.03
T-Walk - 2 dimensional scans

0.0 0.2 0.4 0.6 0.8 1.0

Convergence tolerance

0.0

0.2

0.4

0.6

0.8

1.0

lo
g
(L

) B
F

10−2 10−1 100

4.38

4.40

4.42

4.44

4.46

4.48

Number of chains (Nchain)=256

10−2 10−1 100

Number of chains (Nchain)=512
T-Walk - 7 dimensional scans

0.0 0.2 0.4 0.6 0.8 1.0

Convergence tolerance

0.0

0.2

0.4

0.6

0.8

1.0

lo
g
(L

) B
F

10−2 10−1 100
3.4

3.5

3.6

3.7

3.8

3.9

4.0

Number of chains (Nchain)=256

10−2 10−1 100

Number of chains (Nchain)=512
T-Walk - 15 dimensional scans

Fig. 10: Top row: Best-fit log-likelihoods for two-dimensional
scans using the T-Walk algorithm, as a function of the number
of chains used, for two different convergence tolerances (tol).
Middle and bottom panels: Best-fit log-likelihoods as a function
of convergence tolerance (tol), for T-Walk scans in seven and
fifteen dimensions with a fixed number of chains. Note that the
likelihood is dimensionful, leading to LBF > 1 [27].

11.4 GreAT

The Grenoble Analysis Toolkit (GreAT [25]) is a tradi-
tional Metropolis-Hastings MCMC able to sample pa-
rameters in parallel using multiple independent chains.

25

GAMBIT 1.0.0

−3

−2

−1

0

lo
g 1

0
λ

h
S

2.0 2.5 3.0 3.5
log10(mS/GeV)

T-Walk
chain number: 512
tol: 0.01
Prof. likelihood

GAMBIT 1.0.0

−3

−2

−1

0

2.0 2.5 3.0 3.5
log10(mS/GeV)

T-Walk
chain number: 512
tol: 0.03
Prof. likelihood

GAMBIT 1.0.0

−3

−2

−1

0

2.0 2.5 3.0 3.5
log10(mS/GeV)

T-Walk
chain number: 512
tol: 0.1
Prof. likelihood

GAMBIT 1.0.0

−3

−2

−1

0

P
rofile

likelihood
ratio

Λ
=
L

/L
m

a
x

2.0 2.5 3.0 3.5
log10(mS/GeV)

0.2

0.4

0.6

0.8

1.0

T-Walk
chain number: 256
tol: 0.01
Prof. likelihood

Fig. 11: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet parameter space, using the T-Walk scanner
with various numbers of chains and different tolerances.

GAMBIT 1.0.0

−3

−2

−1

0

lo
g 1

0
λ

h
S

2.0 2.5 3.0 3.5
log10(mS/GeV)

T-Walk
chain number: 512
tol: 0.01
Marg. posterior

GAMBIT 1.0.0

−3

−2

−1

0

2.0 2.5 3.0 3.5
log10(mS/GeV)

T-Walk
chain number: 512
tol: 0.03
Marg. posterior

GAMBIT 1.0.0

−3

−2

−1

0

2.0 2.5 3.0 3.5
log10(mS/GeV)

GAMBIT 1.0.0

−3

−2

−1

0

lo
g 1

0
λ

h
S

R
elative

probability
P

/P
m

a
x

2.0 2.5 3.0 3.5
log10(mS/GeV)

0.2

0.4

0.6

0.8

1.0

T-Walk
chain number: 256
tol: 0.01
Marg. posterior

Fig. 12: Marginalised posterior probability density maps from a 15-dimensional scan of the scalar singlet parameter space, using
the T-Walk scanner with various numbers of chains and different tolerances. The second to rightmost panel is from a 512-chain scan
with a tolerance of 0.1. Note that the colourbar strictly only applies to the rightmost panel, and that colours map to the same
enclosed posterior mass on each plot, rather than to the same iso-posterior density level (i.e. the transition from red to purple is
designed to occur at the edge of the 1σ credible region, and so on).

The number of chains is controlled by the nTrialLists pa-
rameter, and the number of points to run each chain for
is controlled by nTrials. No other convergence criteria
are available.

For all dimensionalities, we consider nTrials values
of 100, 200, 500, 1000, 2000, 5000 and 10 000. For scans
in Ndim = 7 or 15 dimensions, we test nTrialLists values
of Ndim, Ndim +1 and Ndim +2. For the two-dimensional
scans, we consider a larger range, setting nTrialLists to
2, 4, 24 and 48. We plot a selection of these results in
Fig. 13.

In two dimensions, we see that more chains result in
some improvement in the reliability of the algorithm in
uncovering competitive values of the best-fit likelihood.
Unsurprisingly, Fig. 13 also illustrates a tendency for
longer chains to uncover slightly better fits. These trends
are both borne out substantially more strongly in seven
and fifteen dimensions. Visual inspection of the profile
likelihood maps in Fig. 14 indicates that beyond nTrials
of about 1000, these improvements in best-fit likelihood
with increasing numbers of chains do not come with any
substantial impact on the overall quality of sampling
across the rest of the parameter space. We do notice
a small runtime improvement, however. For example,
two two-dimensional scans, each with 10 000 samples

per chain, took 119min to complete with nTrialLists =
48, but 165min with nTrialsLists = 4. The best-fit log-
likelihoods returned by the two scans were equal to the
third significant figure. This timing difference reflects
the improvement in acceptance that can be achieved
when GreAT is able to draw on many different chains
for constructing its correlation matrix.

In Fig. 15, we show the posterior maps resulting
from the final set of independent samples returned by
GreAT after its thinning process. Clearly, none of the
scans we have run produce enough independent samples
for a convergent map of the posterior, at least at the
relatively high bin resolution that we employ for these
tests.

For all scans, we observe that a minimum value
between 1000 and 10 000 for nTrials is required in or-
der to achieve a consistent value for the best-fit log-
likelihood. We also notice that very low values (below
∼1000) map the profile likelihood rather poorly. The
value of nTrialLists appears to be less crucial to the
quality of the result; in general, values of Ndim + 1 and
above appear to give relatively stable results when cou-
pled with nTrials & 10 000. Substantially longer chains
(nTrials� 10 000) would probably be required to obtain
high-resolution posterior maps.

26

0.0 0.2 0.4 0.6 0.8 1.0
Chain length (nTrials)

0.0

0.2

0.4

0.6

0.8

1.0

lo
g(
L)

B
F

102 103 104 105

4.53

4.54

4.55

4.56

4.57
2 chains

102 103 104 105

4 chains

102 103 104 105

24 chains

102 103 104 105

48 chains

GreAT - 2 dimensional scans

0.0 0.2 0.4 0.6 0.8 1.0
Chain length (nTrials)

0.0

0.2

0.4

0.6

0.8

1.0

lo
g(
L)

B
F

102 103 104

4.15

4.30

4.45

7 chains

103 104

8 chains

103 104

9 chains

GreAT - 7 dimensional scans

0.0 0.2 0.4 0.6 0.8 1.0
Chain length (nTrials)

0.0

0.2

0.4

0.6

0.8

1.0

lo
g(
L)

B
F

102 103 104
0.5

1.0

1.5

2.0

2.5

3.0

3.5

15 chains

103 104

16 chains

103 104

17 chains

GreAT - 15 dimensional scans

Fig. 13: Best-fit log-likelihoods for scans using the GreAT sampler in two (top row), seven (middle row) and fifteen dimensions
(bottom row). The number of chains is set by the nTrialLists parameter. Note that the likelihood is dimensionful, leading to
LBF > 1 [27].

11.5 The effect of dimensionality on performance

We have studied scanner performance in detail for two,
seven and fifteen-dimensional parameter spaces, by in-
creasing the number of nuisance parameters; each addi-
tional parameter adds an additional Gaussian compo-
nent to the likelihood, and modifies the existing com-
ponents. We now fix the computing configuration and
scanner parameters (or apply a consistent scaling with

dimensionality, where appropriate), and carry out scans
for every possible dimensionality from two to fifteen.
The results of these tests are presented in Fig. 16. The
scanner settings we use for these tests are:
Diver: NP = 20 000, convthresh = 10−3

MultiNest: nlive = 20 000, tol = 10−3

T-Walk: chain_number = number of MPI processes +
Ndim + 1, tol = sqrtR − 1 = 0.05

GreAT: nTrials = 2000, nTrialsList = Ndim + 1

27

GAMBIT 1.0.0

−3

−2

−1

0

lo
g 1

0
λ

h
S

2.0 2.5 3.0 3.5
log10(mS/GeV)

GreAT
nTrialLists: 17
nTrials: 20,000
Prof. likelihood

GAMBIT 1.0.0

−3

−2

−1

0

2.0 2.5 3.0 3.5
log10(mS/GeV)

GreAT
nTrialLists: 17
nTrials: 10,000
Prof. likelihood

GAMBIT 1.0.0

−3

−2

−1

0

2.0 2.5 3.0 3.5
log10(mS/GeV)

GreAT
nTrialLists: 15
nTrials: 10,000
Prof. likelihood

GAMBIT 1.0.0

−3

−2

−1

0

P
rofile

likelihood
ratio

Λ
=
L

/L
m

a
x

2.0 2.5 3.0 3.5
log10(mS/GeV)

0.2

0.4

0.6

0.8

1.0

GreAT
nTrialLists: 17
nTrials: 2,000
Prof. likelihood

Fig. 14: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet parameter space, using the GreAT sampler
with various numbers of chains (nTrialLists) and chain lengths (nTrials).

GAMBIT 1.0.0

−3

−2

−1

0

lo
g 1

0
λ

h
S

2.0 2.5 3.0 3.5
log10(mS/GeV)

GreAT
nTrialLists: 17
nTrials: 20,000
Marg. posterior

GAMBIT 1.0.0

−3

−2

−1

0

2.0 2.5 3.0 3.5
log10(mS/GeV)

GreAT
nTrialLists: 17
nTrials: 10,000
Marg. posterior

GAMBIT 1.0.0

−3

−2

−1

0

2.0 2.5 3.0 3.5
log10(mS/GeV)

GreAT
nTrialLists: 15
nTrials: 10,000
Marg. posterior

GAMBIT 1.0.0

−3

−2

−1

0 R
elative

probability
P

/P
m

a
x

2.0 2.5 3.0 3.5
log10(mS/GeV)

0.2

0.4

0.6

0.8

1.0

GreAT
nTrialLists: 17
nTrials: 2,000
Marg. posterior

Fig. 15: Marginalised posterior ratio maps from a 15-dimensional scan of the scalar singlet parameter space, using the GreAT
sampler with various numbers of chains (nTrialLists) and chain lengths (nTrials). Note that the colourbar strictly only applies to
the rightmost panel, and that colours map to the same enclosed posterior mass on each plot, rather than to the same iso-posterior
density level (i.e. the transition from red to purple is designed to occur at the edge of the 1σ credible region, and so on).

To reach convergence, GreAT requires significantly
more likelihood evaluations for a larger number of di-
mensions. Although this is undoubtedly in part due to
the increased number of chains used in higher dimen-
sions, even with this increased number of evaluations,
the best-fit log-likelihood is not competitive with that
achieved by either Diver or MultiNest. If we demanded
that all scanners must achieve the same quality of best
fit, then it is clear that GreAT would require an even
greater number of function evaluations to achieve this.
Judging from the quality of best fit, the decrease in
the number of evaluations required for convergence by
GreAT in higher dimensions is clearly the result of spu-
rious early convergence, rather than any increase in
performance.

Diver performs extremely well at all dimensionalities,
out-performing the other three scanners in terms of qual-
ity of best fit at Ndim ≥ 10. It also achieves this using a
consistent number of likelihood evaluations across the
full dimensionality range. MultiNest is able to achieve a
competitive best-fit log-likelihood up until Ndim ∼ 10,
however this comes with a steady increase in the number
of evaluations with respect to dimensionality. T-Walk
runs for a consistent number of likelihood evaluations
across all dimensions, despite the required increase in

number of chains, yet the best-fit deteriorates signifi-
cantly with respect to dimensionality, in much the same
way as it does with GreAT. The ensemble version of the
MCMC algorithm implemented by T-Walk essentially
provides the same best-fit performance as the regular
MCMC (GreAT), but with a significant improvement in
efficiency with increasing dimension. Overall, at least in
this parameter space, Diver appears to be the scanner
of choice for larger dimensions.

11.6 Scanning efficiency

The number of likelihood evaluations required to reach
convergence is not the only reasonable metric for scan-
ner efficiency. In general the number of evaluations is
used as a proxy for time, as the likelihood evaluations
are generally expected to be the bottleneck in most
scans – but it is also illustrative to look directly at
actual runtime. The efficiency of a scanner can be de-
graded by poor use of parallel processing capabilities,
or by complicated calculations performed between likeli-
hood evaluations. This can lead to a divergence between
the apparent performance assessed purely by number
of function evaluations, and the true walltime needed.
We therefore record the actual CPU time used for all

28

2 4 6 8 10 12 14 16

Dimensionality

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

lo
g(
L)

B
F

Multinest
T-Walk
GreAT
Diver

2 4 6 8 10 12 14 16

Dimensionality

0.0

0.2

0.4

0.6

0.8

1.0

N
um

be
r

of
lik

el
ih

oo
d

ev
al

ua
ti

on
s

×106

Multinest
T-Walk
GreAT
Diver

Fig. 16: Best-fit log-likelihood (left) and number of likelihood evaluations (right) as a function of dimensionality, for all four
scanning algorithms, using a fixed computing configuration and scanner settings. Note that the likelihood is dimensionful, leading
to LBF > 1 [27].

scans, and compare with the total number of likelihood
evaluations in Figure 17.3

Fig. 17 shows that dimensionality has a significant
impact on the relative efficiency per likelihood evalua-
tion of each algorithm. For two-dimensional scans, we
see that T-Walk performs the least efficiently, while the
other algorithms are reasonably similar. However, in the
higher-dimensional parameter spaces, the efficiency of
the nested sampling in MultiNest becomes comparable
to the MCMC in T-Walk, whereas GreAT and Diver re-
main relatively efficient. The reduction in performance
by MultiNest in higher dimensions is probably due to the
complicated calculations required to perform its ellip-
soidal sampling of multi-dimensional modes. These cal-
culations must be performed between each generation of
live points. Another potential cause of the performance
reduction in T-Walk and MultiNest is the intrinsic level
of parallelisability of their algorithms, relative to the
other scanners. For problems with larger numbers of
parameters, we observe that the most efficient sampling
algorithms are GreAT and Diver, with both exhibiting
the lowest average latency between likelihood evalua-
tions.

In Fig. 18, we summarise the overall performance
of the algorithms in terms of time and fit quality at
each dimensionality. We bin all completed test scans
logarithmically in the total convergence time, and for
each sampler, choose the scan in each bin with the best
fit. There are no Diver points in the longer bins, simply

3Here we use 24 processes for the two dimensional scans, and 240
processes for the seven and fifteen-dimensional scans, so time
comparisons should not be drawn between the two-dimensional
plots and the seven/fifteen-dimensional ones.

because the longest Diver scans took less time than the
longest scans with other samplers. Diver clearly outper-
forms the other algorithms in high dimensions by this
metric as well, finding a better fit in a shorter runtime
than the other three algorithms. It is also important to
note the vertical scales in Fig. 18, where the likelihood
values span a much wider range in seven and fifteen
dimensions than in two. On close inspection however,
we can see even in two dimensions that Diver and Multi-
Nest obtain better fits in less time than either T-Walk
or GreAT.

We also notice that in higher dimensions, although
T-Walk takes less evaluations than GreAT, both take a
similar amount of runtime to reach convergence, sug-
gesting that T-Walk’s reduced sampling is offset by addi-
tional algorithmic complexity requiring more extended
calculations between samples.

11.7 Posterior sampling

Figs. 8, 12 and 15 show the posterior sampling abilities
of T-Walk, MultiNest and GreAT, respectively. The best-
quality posterior in T-Walk took 9 hr, while in MultiNest
the best posterior we show took over 21 hr. The highest-
quality GreAT posterior we show took even longer, and
is clearly a poorer result than what was achieved by
T-Walk and MultiNest.

Comparing the quality of the posterior maps
achieved by T-Walk and MultiNest reveals some inter-
esting trends. Firstly, despite taking less than half the
runtime, the best posterior map returned by T-Walk
appears to have given a better-converged map of the
posterior than the best effort by MultiNest.

29

103 104 105 106 107

Number of likelihood evaluations

101

102

103

104

105

R
un

ti
m

e
(s

ec
on

ds
)

2 dimensional scans
T-walk
Diver
Multinest
GreAT

104 105 106 107

Number of likelihood evaluations

102

103

104

105

106

R
un

ti
m

e
(s

ec
on

ds
)

7 dimensional scans
T-walk
Diver
Multinest
GreAT

104 105 106 107 108

Number of likelihood evaluations

102

103

104

105

106

R
un

ti
m

e
(s

ec
on

ds
)

15 dimensional scans
T-walk
Diver
Multinest
GreAT

Fig. 17: The real time required as a function of likelihood evalu-
ations for two- (upper), seven- (middle) and fifteen-dimensional
(lower) scans.

103 104

Run time (seconds)

4.540

4.545

4.550

4.555

4.560

4.565

4.570

4.575

4.580

lo
g(
L)

B
F

2 dimensional scans

Diver
Multinest
T-walk
GreAT

103 104 105

Run time (seconds)

4.30

4.35

4.40

4.45

4.50

4.55

4.60

lo
g(
L)

B
F

7 dimensional scans

Diver
Multinest
T-walk
GreAT

103 104 105

Run time (seconds)

0

1

2

3

4

5

lo
g(
L)

B
F

15 dimensional scans

Diver
Multinest
T-walk
GreAT

Fig. 18: The best-fit likelihood achieved by each scanner within
a given time limit, for two (upper), seven (middle) and fifteen-
dimensional (lower) scans.

30

Table 2: The recommended starting parameters for each scanner
available in GAMBIT 1.0.0. Here Ndim is the dimensionality
of the scan and NMPI is the number of (distributed-memory)
parallel processes available to GAMBIT.

Scanner Parameter Recommendation
MultiNest nlive 2× 104

tol 10−3

Diver NP 2× 104

convthresh 10−3

T-Walk chain_number Ndim +NMPI + 1
sqrtR < 1.01

GreAT nTrialLists Ndim + 1
nTrials 104

We can also see a distinct tendency for the shapes
of the contours returned by MultiNest to erroneously
‘smooth away’ sharper features in the posterior, which
are mapped far more carefully and accurately by T-
Walk. This is most likely due to the ellipsoidal sampling
method intrinsic to MultiNest, which biases the algo-
rithm towards finding new live points within elliptically-
shaped regions encompasing its current population of
points. This makes it rather easy for the algorithm to
miss sharp features in the posterior, such as the low-
coupling tip of the highest-mass mode in the scaler sin-
glet parameter space, which would protrude beyond the
approximate contour defined by the bounding ellipsoids
in MultiNest.

We also see that posterior maps become poorer for
shorter scans with both T-Walk and MultiNest, but in
quite distinct ways. In MultiNest, a scan performed with
too few live points or too high a tolerance will give
a poorly-sampled posterior with few favoured regions,
essentially because the algorithm has only managed to
locate the most dominant modes of the posterior at the
outset. In contrast, a poorly-converged T-Walk scan,
particularly one with a large tol value, will typically
instead result in a map that includes all relevant modes
across the parameter space, but with their relative con-
tributions poorly determined, such that they appear
alongside a number of other, spurious, favoured regions.
When inspecting a posterior map, particularly from brief
scans, it is important to be aware of these differences
between the algorithms.

11.8 Discussion

We have investigated the performance of the four major
samplers available in ScannerBit as part of GAMBIT
1.0.0, over a range of algorithmic settings and parameter
space dimensionalities. In Table 2, we summarise our
recommended values for the two most important settings

of each scanner. These are intended as starting values
that will give reasonably robust results. However, every
parameter space is different and a publication quality
results may require significantly more stringent settings,
in order for final results to be sufficiently robust. See
Secs. 11.2–11.4 for more detailed recommendations.

We are also able to make detailed comparisons be-
tween the four scanning algorithms. In Secs. 11.5 and
11.6 it became evident that differential evolution, as im-
plemented in Diver, consistently out-performs the other
algorithms in the computation of profile likelihoods. This
becomes particularly clear in high dimensions, where
Diver leads the other algorithms in likelihood mapping,
the quality of the best fit found, and overall efficiency.

For careful mapping of the posterior, we find that
T-Walk is the most effective algorithm, followed by Multi-
Nest and GreAT. T-Walkmanages to sample the posterior
distribution at higher resolution in less time than the
other two scanners, and avoids the ellipsoidal biases that
appear to afflict MultiNest. For computing low-resolution
posteriors however, MultiNest has the advantage that
it requires less parameter tuning than T-Walk, and can
more quickly identify which are the most relevant pos-
terior modes.

In many cases, having both Bayesian and frequen-
tist interpretations of results is desirable. This makes it
necessary to use a sampler able to effectively sample the
posterior, such as MultiNest or T-Walk. However, our
tests show that this is best performed after the likeli-
hood function has been carefully mapped with another
sampler, in order to find all modes. For example, in
Figure 7, MultiNest has completely missed the likelihood
mode at low mass. This mode was successfully found
by all three of the other samplers. If MultiNest were to
be used exclusively, then this region — which contains
best-fit points degenerate with those in the other modes
— would be completely unexplored. However, with the
knowledge gained from the other scanners, a localised
study can be performed using MultiNest around the low
mass region (a technique used in Refs. [32, 34]), in or-
der to correctly evaluate the full posterior. In this way,
the ability to use complementary scanners significantly
improves the statistical robustness of results.

For lower-dimensional problems where both posterior
distribution and profile likelihood are required, Multi-
Nest could potentially be used solo, to save repeating
analyses with multiple scanners. We find that it is able to
locate all modes when scanning only the two-dimensional
parameter space, and that it is reasonably efficient com-
pared with the other algorithms. In general though,
relying on only a single sampling algorithm is risky.

The two MCMC-based scanners available in GAM-
BIT 1.0.0, T-Walk and GreAT, provide the user with

31

a somewhat more traditional class of sampling meth-
ods. Although these algorithms are demonstrably less
effective scanners in higher-dimensional profile likeli-
hood problems, they may suit lower-dimensional studies
better.

Notably, our tests here are based on only one physical
problem; although this is intended as a realistic example,
no single example could ever represent the full diversity
of problems that might be encountered. Other parameter
spaces and likelihood functions may therefore reveal
different trends to those we have observed with the
scalar singlet model.

12 Conclusions

In this paper we have presented ScannerBit, the statis-
tical and sampling module for the new global fitting
package GAMBIT. ScannerBit manages the overhead
associated with choosing parameter combinations and
applying prior transforms, and offers an extremely flex-
ible framework into which any existing sampling code
can be easily integrated. It is able to perform sampling
in standard random, grid and raster patterns, or em-
ploy more sophisticated statistical methods including
nested sampling, differential evolution, Markov Chain
Monte Carlo and ensemble Monte Carlo. It interfaces
seamlessly with the GAMBIT printer system to allow
statistical and physical outputs of parameter scans to be
saved to a common format of choice, entirely indepen-
dent of the model under investigation or the sampling
algorithm in use. It can also post-process existing sets of
samples previously computed and saved with GAMBIT.
ScannerBit can be used from within GAMBIT, or as a
standalone package independent of GAMBIT, allowing
the user to connect to an arbitrary likelihood function
and sample it using their desired algorithm.

In addition to ScannerBit itself, we have presented a
new standalone sampling package based on differential
evolution: Diver. Diver features a full suite of differen-
tial evolution variants, from standard rand/1/bin to
adaptive and discrete versions, and additional operation
modes designed to provide approximate Bayesian results.
We have also presented a new implementation of the
T-Walk algorithm, implemented natively in ScannerBit.

We compared the performance of the four main sam-
pling algorithms interfaced to ScannerBit in GAMBIT
1.0.0: Diver, MultiNest, T-Walk and GreAT. We found
that for profile likelihood analyis at low dimensionality,
Diver and MultiNest outperform T-Walk and GreAT, and
provide roughly equivalent performance to each other.
At higher dimensions (10 and above), Diver substantially
outperforms the other three algorithms on all metrics.
T-Walk provides a more accurate, timely and complete

mapping of the Bayesian posterior than MultiNest, al-
though MultiNest identifies the primary posterior mode
more quickly.

ScannerBit and GAMBIT can be obtained from gam-
bit.hepforge.org, and are both released under the terms
of the standard 3-clause BSD license.4 Diver can be
downloaded from diver.hepforge.org, or installed auto-
matically from within GAMBIT by simply typing make
diver; it is released under a license that makes it free to
use and distribute for academic and non-profit purposes.

13 Acknowledgements

We thank the other members of the GAMBIT Collab-
oration for helpful discussions. We warmly thank the
Casa Matemáticas Oaxaca, affiliated with the Banff In-
ternational Research Station, for hospitality whilst part
of this work was completed, and the staff at Cyfronet,
for their always helpful supercomputing support. GAM-
BIT has been supported by STFC (UK; ST/K00414X/1,
ST/P000762/1), the Royal Society (UK; UF110191),
Glasgow University (UK; Leadership Fellowship), the
Research Council of Norway (FRIPRO 230546/F20),
NOTUR (Norway; NN9284K), the Knut and Alice
Wallenberg Foundation (Sweden; Wallenberg Academy
Fellowship), the Swedish Research Council (621-2014-
5772), the Australian Research Council (CE110001004,
FT130100018, FT140100244, FT160100274), The Uni-
versity of Sydney (Australia; IRCA-G162448), PLGrid
Infrastructure (Poland), Polish National Science Cen-
ter (Sonata UMO-2015/17/D/ST2/03532), the Swiss
National Science Foundation (PP00P2-144674), the Eu-
ropean Commission Horizon 2020 Marie Skłodowska-
Curie actions (H2020-MSCA-RISE-2015-691164), the
ERA-CAN+ Twinning Program (EU & Canada), the
Netherlands Organisation for Scientific Research (NWO-
Vidi 016.149.331), the National Science Foundation
(USA; DGE-1339067), the FRQNT (Québec) and
NSERC/The Canadian Tri-Agencies Research Coun-
cils (BPDF-424460-2012).

Appendix A: Sources, options and outputs of
the Diver package

A.1: Sources

Each of the source files located in diver/src/ contains a
single eponymous Fortran module:

de.f90: the main module of Diver, containing the func-
tion diver(), by which the package is invoked.

4http://opensource.org/licenses/BSD-3-Clause

gambit.hepforge.org
gambit.hepforge.org
diver.hepforge.org
http://opensource.org/licenses/BSD-3-Clause

32

init.f90: contains routines to set all parameters for the
run and to initialise the population every generation

mutation.f90: contains routines to allow standard DE
mutation following equation (23) and self-adaptive
mutation using jDE or λjDE (see Sec. 10.2.2).

crossover.f90: contains routines to allow binomial or
exponential crossover, or self-adaptive crossover us-
ing jDE or λjDE.

selection.f90: performs selection of the next generation
of vectors, applies boundary conditions, and removes
duplicate vectors to ensure population diversity (see
Sec. 10.2.4). If MPI is used, this is where most MPI
routines are called.

converge.f90: checks whether the population has con-
verged sufficiently to end the current DE run.

io.f90: saves the parameters of the run as well as the
population at regular intervals. Contains routines to
continue a run that was stopped partway through.

evidence.f90: contains routines used for calculating
approximate Bayesian evidence values.

posterior.f90: contains routines used for calculating
approximate Bayesian posterior probability density
functions.

detypes.f90: contains interfaces to the likelihood func-
tion and prior, as well as the definitions of the inter-
nal data types used by Diver.

deutils.f90: contains utility routines.
cwrapper.f90: acts as an interface between C/C++
drivers and de.f90.

A.2: Run options

Options for a Diver run are passed directly as arguments
to diver() or cdiver(). The required arguments are:

double precision func(): The function to optimise, as-
sumed to be positive definite; should generally cor-
respond to the negative log-likelihood for statistical
scans. See example driving programs for suggested
use. Must take the following arguments:

double precision params: An array of size equal to
the sum of D (the dimensionality of the parame-
ter space) and nDerived, the number of derived
quantities to be output in the run.

integer fcall: The total number of calls to func;
should be incremented appropriately by the ob-
jective function.

logical quit: A flag set by the objective function.
If this is ever set to true, Diver will save and quit
at the end of the current generation.

logical validvector: A flag set by Diver. If this
is false, the point in parameter space repre-

sented by params is outside the specified parame-
ter boundaries, and should not be evaluated.

c_ptr context: A context pointer, allowing the driv-
ing program to pass arbitrary information to func.
Can be modified in a call to func, and will retain
its value the next time the function is called.

double precision lowerbounds: An array of size D, giv-
ing the desired lower bounds of the parameter space.

double precision upperbounds: An array of size D, giv-
ing the desired upper bounds of the parameter space.

character path: The path to which output files should
be saved.
Other arguments are optional and default to sensible

values if left unspecified. Here we list these in the format
option[default]:

integer nDerived[0]: The number of derived quantities
to be calculated by the likelihood/objective function.
If outputSamples is true, these are saved in human-
readable format along with the original parameters
in a .sam file.

integer discrete[empty]: A vector listing all dimensions
of the parameter space that should be treated as
discrete parameters. See Sec. 10.2.3 for details.

logical partitionDiscrete[false]: Evolve discrete pa-
rameters as separate populations. See Sec. 10.2.3 for
details.

integer maxciv[2000 if doBayesian else 1]: The maxi-
mum number of ‘civilisations’ to run. A civilisation
is a full DE run with multiple generations, which ter-
minates either because it has converged or reached
generation number maxgen. If doBayesian is true, Diver
will run additional civilisations up to maxciv until
the approximate Bayesian evidence has converged;
if doBayesian is false, Diver will simply repeat DE
optimisation maxciv times, and save the results as a
single set of samples.

integer maxgen[300]: The maximum number of genera-
tions for the DE run. Usually the default convergence
criterion will cause Diver to end the DE run before
this number has been reached.

integer NP[10*size(lowerbounds)]: The population size.
Larger populations take longer to run but are less
likely to become trapped in local minima. Small pop-
ulations run more quickly because they require fewer
likelihood/objective evaluations per generation, but
they lack diversity and may converge prematurely.
The default is set to 10D; we recommend that NP
never be set to less than D. If Diver is invoked using
MPI, the actual population size will be increased
from the requested size until it is a multiple of the
number of MPI processes to be used.

double precision F[0.7]: The mutation scale factor(s);
see Secs. 10.1.1 and 10.1.4. This should be supplied

33

as an array. The scale factor, and the degree to which
the population is spread out, together determine the
radius around the population in which new points
can be proposed. For this reason, F should be smaller
than 1, to help convergence, but not too small, to pre-
vent premature convergence. This option is ignored
when jDE or lambdajDE is true.

double precision Cr[0.9]: The crossover rate; see
Secs. 10.1.2 and 10.1.4. This option encourages mix-
ing between the trial and target vectors, and can
encourage search along individual dimensions. This
parameter should be set between 0 and 1, inclusive.
If it is set to 0, trial vectors will differ from the
target vector along only one dimension. If it is set
to 1, trial vectors will be entirely unrelated to their
target vectors. This option is ignored when jDE or
lambdajDE is true.

double precision lambda[0]: A scale factor linking the
best target vector in the population to the initial
vector chosen for mutation; see Sec. 10.1.4. This
may take any value between 0 and 1, inclusive. If
lambda = 0, the best vector is not used for mutation.
If lambda = 1, mutation will use the best vector as the
starting point for all new vectors. As a result, setting
lambda > 0 will cause DE to optimise more aggres-
sively. This option is ignored when jDE or lambdajDE
is true.

logical current[false]: Use the current target vector
as a base for mutation; see Sec. 10.1.4. This option
is ignored when jDE or lambdajDE is true.

logical expon[false]: Use exponential crossover in-
stead of binomial; see Sec. 10.1.4. This option is
ignored when jDE or lambdajDE is true.

integer bndry[1]: Controls the behaviour when trial
vectors are outside the allowed boundaries of the
parameter space. Should be set to an integer between
1 and 4:

1 (‘brick wall’): points outside the boundaries are
rejected during the selection phase.

2 (‘random reinitialisation’): For each point outside
the bounds, a random new valid point is chosen.

3 (‘reflection’): points outside the boundaries are
reflected across the limits so that they land inside.
This option is recommended if full exploration of
the edges of parameter space is desired.

≥4 (none): boundary conditions are not enforced.
This may lead to the population drifting away
from the initially specified region of parameter
space, and should be used with caution.

logical jDE[true]: Use self-adaptive rand/1/bin DE,
as described in section 10.2.2. If this option is true,
the values set for F, Cr, lambda, current, and expon

are ignored. This option is ignored when lambdajDE
is true.

logical lambdajDE[true]: Use self-adaptive rand-to-
best/1/bin DE, as described in section 10.2.2. If
this option is true, the values set for F, Cr, lambda,
current, expon, and jDE are ignored. If less aggressive
optimisation is required, we recommend that this be
turned off, and jDE used instead.

double precision convthresh[0.001]: The threshold for
convergence of one DE population (a ‘civilisation’).
The smoothed fractional improvement in the popula-
tion over successive generations must drop below this
value for a population to achieve convergence. Assum-
ing that the likelihood/objective function (func())
has been chosen to return lnL, the smoothed frac-
tional improvement in the mean is defined as

δsmooth = 1
n

j−n+1∑
i=j

[
1−

∑
population lnLi−1∑

population lnLi

]
,

(A.1)

where i is the generation index, j is the current gen-
eration number, and n is the population smoothing
length, given by convsteps.

integer convsteps[10]: The number of generations over
which to smooth the fractional improvement of the
mean population value of the likelihood/objective
function when testing for convergence.

logical removeDuplicates[see Sec. 10.2.4]: Remove dupli-
cate vectors within a single generation. Turning this
on is generally good for population diversity. Dupli-
cates are however exceedingly rare when either jDE or
current is true, so keeping removeDuplicates = true
in these cases is not necessary, but can be a useful
debug check against MPI problems.

logical doBayesian[false]: Estimate posterior weights
of population members, and the natural log of the
Bayesian evidence lnZ; see Sec. 10.2.5.

double precision prior(): The prior function to be ac-
counted for in approximate Bayesian computations;
see Sec. 10.2.5. Required if doBayesian is true, ignored
otherwise.

integer maxNodePop[1.9]: The population above which
to perform node division in the binary spanning tree
used to estimate posterior weights; see Sec. 10.2.5.
Ignored unless doBayesian is true.

double precision Ztolerance[0.01]: The fractional un-
certainty in lnZ taken to indicate convergence of
the evidence; Sec. 10.2.5. Ignored unless doBayesian
is true.

integer savecount[1]: The number of generations that
should pass between periodic saves of the population.

logical resume[false]: Resume from a previous run.

34

logical outputSamples[true]: Write samples and de-
rived quantities in an output .sam file. Even if this
is false, the .sam file will still be written if discrete
is non-empty.

integer init_population_strategy[0]: Strategy to em-
ploy when initialising the first generation. Should be
set to an integer between 0 and 2:

0 (‘one-shot’): initialise each member of the first gen-
eration to a different random point drawn from
between the stated lowerbounds and upperbounds,
without regard to its fitness.

1 (‘n-shot’): draw candidate initial population
members randomly from between lowerbounds
and upperbounds. Accept a candidate if its func-
tion value is below max_acceptable_value, oth-
erwise attempt to draw an alternative candi-
date. Continue until max_initialisation_attempts
is reached, then if a good candidate has still not
been found, accept the next candidate without
regard to its fitness.

2 (‘fatal n-shot’): as per 1, but throw a hard error
if max_initialisation_attempts is reached when
initialising any member of the first generation.

integer max_initialisation_attempts[10000]: Max-
imum number of times to try to find a valid
vector when initialising each member of the initial
population if init_population_strategy > 0; ignored
otherwise.

double precision max_acceptable_value[106]: The cut-
off value of the objective function below which to con-
sider a candidate initial population member ‘accept-
able’ if init_population_strategy > 0; ignored other-
wise.

c_ptr context[C_NULL_PTR]: A raw void callback pointer,
used to pass information from the driver program to
the objective function. This is typically used to pass
an external function address, which the objective
function then uses to help with its evaluation.

integer verbose[1]: The amount of information to print
to screen. Recognised values are:

0(‘Quiet’): Only error messages will be printed.
1(‘Laconic’): Prints warning messages and a sum-
mary at the beginning and end.

2(‘Chatty’): Prints civilisation-level and basic gener-
ation-level information.

3+(‘Verbose’): Prints detailed information for each
generation.

A.3: Output formats

Diver produces up to four different output files, in plain
ASCII format. The first three of these are always gener-
ated, and are needed for resuming a run.

path.rparam: the complete range of Diver settings in
use in the current run, including optional param-
eters. The meaning of each entry in this file can
be read off the comments provided in the routine
save_run_params in io.f90. This file is created dur-
ing the first save operation, which takes place after
savecount generations have been completed (see Sec.
A.2).

path.devo: convergence and other dynamic runtime in-
formation. This is the file to check for evaluating the
progress of a given run. Its contents are as follows:

civilisation number, generation number
Z, 〈P 2〉, ∆Z, unpolished Z
Ns, individuals saved, number of calls to func

fitness at best fit θbest
raw (non-discretised) parameter values at θbest
parameter values and derived quantities at θbest

fitnesses of current population
raw parameters of current population
parameters & derived quantities of current pop.

if jDE or lambdajDE:
F values of current population
Cr values of current population
λ values of current population

δsmooth
individual contributions to δsmooth from each of
the last convsteps generations

Further information can be found in the routine
save_state of io.f90. Like the .rparam file, this file is
created during the first save operation.

path.raw: the posterior weight, fitness, civilisation num-
ber, generation number and raw parameter values
(in this order), for every individual so far generated
in a scan. The data for each individual occupies a
single line in the file. In order to allow proper resump-
tion of the run, the sampled values of any discrete
parameters appear as they are used internally for
mutation, i.e. as values of a continuous parameter.
This file is created before the initial population is
generated.

path.sam: all parameter samples, in a similar format to
the .raw file, but with additional columns for each de-
rived quantity calculated in a scan. The sampled val-
ues of any discrete parameters are also given rounded
to their true discrete values in this file, unlike in the
.raw file. This file is only generated if outputSamples =
true and either discrete is non-empty or nDerived 6=
0. This file is created immediately after the .raw file.

35

Appendix B: Scanner options and outputs

For quick reference, here we provide the ScannerBit
YAML file options and output formats for all five of the
major scanners mentioned in this paper: the postproces-
sor (Sec. 6), GreAT (Sec. 7), T-Walk (Sec. 8) MultiNest
(Sec. 9) and Diver (Sec. 10).

B.1: Postprocessor

The YAML setup required to run the postprocessor spans
two sections of the master YAML file: the usual Scanner
section, plus also the Parameters section.5 In the Scanner
section, the options [and defaults] are as follows:

like: The purpose to use as the objective; should gener-
ally match the purpose set for likelihood components
(e.g. in the ObsLike section of a GAMBIT YAML file).

reweighted_like: The output label used for the final
result of add_to_like and subtract_from_like opera-
tions.

add_to_like[empty]: A vector of names of datasets
present in the input samples, presumably log-
likelihood values, to be added to the newly computed
like and output as reweighted_like. (Note that the
‘newly-computed’ like may be zero if no entries in
the GAMBIT ObsLike section have been assigned a
purpose that matches like). For example, if the com-
bined likelihood of a previous scan were labelled
"LogLike", and one were to choose like:New_LogLike
as the new composite (log-)likelihood for a new
‘scan’, then the way to ensure that the old and
the new composite log-likelihoods were automati-
cally summed for every model point would be to
set add_to_like:[LogLike]. The results of this sum-
mation would appear in the new output with the
label by reweighted_like.

subtract_from_like[empty]: As per add_to_like, except
the old output is subtracted from like.

permit_discard_old_likes[false]: When set to false,
this option forbids the purpose chosen for like from
clashing with any data label in the input samples. For
example: if the original purpose was LogLike, a differ-
ent purpose must be chosen for like, or an error will
be thrown. If this option is set true, then clashes are
permitted, and will be resolved in the new output by
replacing the old data with the newly-computed data
(as occurs automatically for all other clashes between
old and new dataset names). This option also ap-
plies to likelihood components listed in add_to_like,
subtract_from_like, and reweighted_like. If set to

5Some of the requirements of the Parameters section can be
optionally implemented in the Priors section instead.

false then these names may not be recomputed dur-
ing postprocessing.

update_interval[1000]: Defines the number of iterations
between messages reporting on the progress of the
postprocessing.

reader: Options under this item specify the format
of the old output file to be read, along with e.g.
the path at which the file is located. The required
options differ depending on which GAMBIT printer
was used to save the results of the previous scan.

The final option, reader, is used to inform the post-
processor of the format and location of the old data that
needs to be reprocessed. In this first release of GAMBIT
there are only two possible printer formats, ascii and
hdf5, as described in [27]. There are therefore at present
only two sets of options that may be specified for the
reader. For files created with the hdf5 printer:

type: hdf5
file: Path to the HDF5 file containing the data to be
parsed

group: Group within the HDF5 file containing datasets
to be parsed.

For ascii output:

type: ascii
data_filename: Path to the ASCII file containing the
data to be parsed

info_filename: Path to the ASCII ‘header’ file that
contains the labelling information for the columns
of data_filename.

Note that the reader need not match the chosen printer
in a postprocessing run; reading samples in ascii and
outputting updated samples in hdf5, or vice versa, is
permitted. This allows GAMBIT samples produced in
one format to be easily converted into any other format.

Using the postprocessor scanner also places some
special requirements on the Parameters and/or Priors
sections of the YAML file. First, the models chosen in
the Parameters section must be a subset of the mod-
els that were used for the original scan. Secondly, the
prior_type for all the parameters in those models must
be set to none. This disables the standard GAMBIT prior
system and allows the postprocessor to manually set
parameter values (see Sec. 3.1.3 for details).

B.2: GreAT

The following options (with defaults in brackets) set the
chain length and number of steps taken used by the
GreAT sampler:

nTrialLists[10]: Number of Markov chains to be run.

36

nTrials[20000]: Number of steps in each Markov chain.

At the end of the run, the complete statistics for all
chains run (burn-in length, correlation length, number of
independent samples) are printed out in GreAT’s native
format. The independent samples and their multiplicities
are stored and outputed to the GAMBIT printer system.

B.3: T-Walk

The options available for T-Walk in ScannerBit (with
defaults in square brackets) are:

kwalk_ratio[0.9836]: ratio of walk and traverse to hop
and blow moves. The default is to strongly prefer
walk and traverse moves.

projection_dimension[4]: dimension of the projection
subspace in which walk and traverse moves are per-
formed.

walk_distance[2.5]: width of the distribution function
for the distance of the walk move (aw; see Eq. 11).

traverse_distance[6]: width of the distribution func-
tion for the distance of the traverse move (at, see
Eq. 15).

gaussian_distance[2.4]: Gaussian jump parameter d
for the hop and blow moves. See Eq. 19.

chain_number[1+projection_dimension+number of MPI
processes]: total number of MCMC chains. T-Walk
will be highly inefficient if this parameter is set to
anything less than the default.

hyper_grid[true]: confines the search to the hypercube
defined by the priors.

sqrtR[1.001]: the version of T-Walk in ScannerBit uses
the Gelman-Rubin convergence diagnostic

√
R [41] to

determine when a scan has converged. This compares
the inter-chain dispersion to the total dispersion
of each parameter. Values closer to 1 are better
converged; when

√
R drops below the value given

for sqrtR, the scan terminates.

The T-Walk scanner also outputs various variables
associated with the scan to the GAMBIT printer system:

mult: Multiplicity (posterior weight) of each sample.
chains: Chain number for each sample. Rejected pro-

posal points are assigned the number −1.

B.4: MultiNest

The ScannerBit plugin that runs the MultiNest sampler
takes the following YAML options, which it passes di-
rectly through to the external MultiNest library (defaults
are given in square brackets):

IS[true]: do nested importance sampling?

mmodal[true]: do mode separation?
ceff[false]: run in constant efficiency mode? Setting
this true can result in poor evidence estimates.

nlive[1000]: number of live points.
efr[0.8]: required efficiency (only relevant if ceff =

true).
tol[0.5]: stopping tolerance; the scan halts when the

ratio of the estimated remaining unsampled evidence
to the current estimate of the evidence drops below
this value.

nClsPar[ndims]: number of parameters to do mode sep-
aration on. The default is to do separation on all
parameters being scanned.

updInt[1000]: update interval; this sets the number
of iterations between output file updates and any
feedback passed to standard output. The MultiNest
dumper function, which handles the calls to the GAM-
BIT printer, runs every 10*updInt iterations.

Ztol[-1090]: the threshold in the logarithm of the evi-
dence below which to ignore modes of the posterior.

maxModes[100]: expected maximum number of modes
(used only for memory allocation).

seed[-1]: seed to use for the internal MultiNest random
number generator. If this is negative, the seed is
taken from the system clock.

fb[true]: provide feedback on run progress to standard
output?

outfile[true]: write nativeMultiNest output files? Scan-
nerBit does not add prior-transformed parameter
values nor auxilliary observable values to the native
MultiNest output, so this output is not very useful
for analysis purposes. However, the native outputs
are required for MultiNest to be able to resume scans
that were previously interrupted. We recommend
leaving this option set unless running scans that will
definitely not need to be resumed.

maxiter[0]: maximum iterations permitted; a non-
positive value is interpreted to mean infinity.
There are several other options that MultiNest or-

dinarily requires when run outside of ScannerBit, but
for which ScannerBit can infer appropriate values and
set automatically. These cannot be set in the Scanner
section of the YAML file (although some can be changed
indirectly by modifying the scan setup elsewhere):
Number of parameters (ndims): ScannerBit sets this op-

tion according to the number of varying parameters
that exist in the model being scanned.

Size of ‘cube’ array (nPar): This is set to ndims+2. The
first ndims slots contain the hypercube parameters,
and in the extra two slots ScannerBit stores an ID
number for each point, plus the MPI rank of the
process that produced it. Together these two num-
bers uniquely identify every point sampled in a scan.

37

These numbers are also stored in the GAMBIT printer
system output, so they can be used to correlate the
native MultiNest output with the GAMBIT printer
output.

Resume mode (resume): ScannerBit activates resume
mode by default unless the -r switch (for ‘restart
scan’) is given at the command line.

Minimum loglike (logZero): points with lnL < logZero
will be ignored by MultiNest. This is set to 0.9999
times the value of model_invalid_for_lnlike_below in
the likelihood node of the KeyValues section of the
main YAML file.

Initialise MPI (initMPI): This is set to false because
ScannerBit handles the initialisation of MPI.

Note that GAMBIT sets logZero to slightly more than
model_invalid_for_lnlike_below. This is so that invalid
points, assigned lnL = model_invalid_for_lnlike_below
by the likelihood container [27], are treated as having
zero likelihood by MultiNest. This is the desired be-
haviour during live point generation, as it prevents any
of the initial live points being invalid.

During live point replacement however, this can
prevent efficient parallelisation, as MultiNest requires
all MPI nodes to continue testing proposed points
until they each find one with lnL > logZero. In
complicated parameter spaces, where the ellipsoids
encompass large regions of invalid parameter space,
this can lead to many nodes idling whilst they wait
for a small number of nodes to find their valid points,
even if one of the points already found has a high
enough likelihood to use for live point replacement.
To circumvent this, following live point generation,
when the MultiNest dumper function first runs, the
MultiNest plugin communicates to ScannerBit and
GAMBIT that likelihoods for invalid points should
no longer be set to model_invalid_for_lnlike_below,
but instead to the value of the alternative op-
tion model_invalid_for_lnlike_below_alt. This key
can also found in the likelihood node of the
KeyValues section of the main YAML file. The
value of model_invalid_for_lnlike_below_alt defaults
to half model_invalid_for_lnlike_below. Whenever
it is set to more than logZero (i.e. 0.9999 times
model_invalid_for_lnlike_below), MultiNest considers
all samples found to be valid, and does not demand
additional samples before evaluating whether those
found are appropriate for live point replacement. We
find that this often results in more than an order of
magnitude improvement in performance when running
MultiNest with O(100) or more MPI processes.

B.5: Diver

The YAML entry KeyValues::likelihood::lnlike_offset
can be used to set the offset to be applied to
the log-likelihood function passed to Diver, in
order to maintain positive definiteness of the
fitness function; this defaults to 10−4 times
KeyValues::likelihood::model_invalid_for_lnlike_below.

The Diver interface in ScannerBit provides almost all
of the run options mentioned in Sec. A.2, configurable
directly from the Diver entry in the main YAML file. With
a few exceptions, these options have the same names
and default values as in Diver itself. The exceptions are:

– NP has no default, and must be specified in the YAML
file

– maxgen defaults to 5000, not 300
– bndry defaults to 3, not 1
– removeDuplicates defaults to true, regardless of other

options
– outputSamples is instead referred to by the YAML

option full_native_output
– init_population_strategy defaults to 2, not 0
– max_acceptable_value defaults to 0.9999 times the

value of model_invalid_for_lnlike_below in the
likelihood node of the KeyValues section of the main
YAML file

– verbose is instead referred to by the YAML option
verbosity, and defaults to 0 instead of 1.

Note that doBayesian is not available as a YAML
option, and is hard-coded to false; there are multiple
other scanners available in ScannerBit more efficient and
accurate at scanning the Bayesian posterior than Diver.
Correspondingly, maxNodePop and Ztolerance are not of-
fered as YAML parameters either. Any user especially
interested in obtaining posteriors from Diver running
within ScannerBit should find this relatively easy to re-
code by comparison with e.g. the MultiNest or GreAT
interface.

Appendix C: Custom priors

ScannerBit allows for users to add their own priors.
These should be declared inside the priors namespace,
in new headers placed in ScannerBit/include/gambit/
ScannerBit/priors, and new source files placed in
ScannerBit/src/priors.

Declaration of a new prior prior_name, arising from
a new class prior_class, takes the form:

class prior_class : public BasePrior
{

public:

38

prior_class(const std::vector<std::string>&
params, const Options& options)

: BasePrior(params, cube_size)
{//insert optional initialisation code}

void transform(const std::vector<double>&
unitpars, std::unordered_map<std::string,
double>& outputMap) const

{//insert non-optional transformation code}
};

LOAD_PRIOR(prior_name, prior_class)

Given this recipe, the only real input required of a
user when implementing a new prior is to decide on its
dimensionality (cube_size), and to write the body of its
transformation function (prior_class::transform).

The class defining the user-specified prior inherits
from the abstract base class BasePrior. This class has
the following members:

BasePrior(std::vector<std::string>, int): Base class
constructor. Takes in a vector of strings that defines
the parameter names, and an integer that specifies
the dimension of the unit hypercube to be operated
on by this prior. Typically this will be 1, or the
entire parameter space, available by simply calling
the size() method on the vector passed as the first
argument.

void transform(std::vector<double>,
std::unordered_map<std::string, double>): A pure
virtual function that defines the prior transformation.
Takes as input a vector of doubles with the input
unit hypercube values, converts them to the actual
model parameters, and stores them in the unordered
map passed (by reference) as the second argument.

unsigned int size(), unsigned int& sizeRef(): Re-
turns the dimension of the input unit hypercube.

void setSize(int): Set the unit hypercube dimension.
std::vector<std::string> param_names: A protected

member variable (i.e. accessible from derived classes
only), which contains the names of the parameters
as passed to the constructor.

A user-defined prior is registered in the ScannerBit prior
database by invoking the following macro after the class
declaration:

LOAD_PRIOR(prior_name, prior_class) Macro that loads
the prior defined in class prior_class, and assigns
it the internal name prior_name.

Here we give a worked example of the declara-
tion of a custom prior. This prior is contained in
the ScannerBit source file ScannerBit/include/gambit/
ScannerBit/priors/dummy.hpp. This prior simply trans-
forms the unit hypercube to the same unit hypercube.

namespace Gambit
{

namespace Priors
{

class Dummy : public BasePrior
{

public:

Dummy(const std::vector<std::string>&
param, const Options&)

: BasePrior(param, param.size())
{}

void transform(const std::vector<double>&
unitpars, std::unordered_map<std::string,
double>& outputMap) const

{
auto it_vec = unitpars.begin();
for (auto it = param_names.begin(),
end = param_names.end(); it != end;
it++)

{
outputMap[*it] = *(it_vec++);

}
}

};

LOAD_PRIOR(dummy, Dummy)
}

}

Here, the Dummy class inherits from the BasePrior class.
The constructor passes the entered parameter names
to the BasePrior constructor, as well as the hypercube
size. The transform function transforms a vector<double>
representing the unit hypercube into actual parameter
values, which are stored in the output map. In this case,
the hypercube values are directly stored in the output
map. Lastly, the Dummy prior is loaded into the prior
system and given the name dummy, by calling the macro
LOAD_PRIOR(dummy, Dummy).

Appendix D: Plugin Declaration and Interface

In the following subsections, we go through the defini-
tion, design, and operation of plugins in detail, starting
with their declaration in Sec. D.1. ScannerBit provides a
broad suite of utility functions that can be called from
plugins. We first deal with the functions available to all
plugins, for accessing information in the initialisation
file of a scan (Appendix D.2), the chosen prior trans-
formation (Appendix D.3), and the GAMBIT printers
(Appendix D.4). We then list utility functions available
only to scanner (Appendix D.5) or objective (Appendix
D.6) plugins.

39

D.1: Plugin declaration

Source code for a plugin plugin_name is located
within a directory ScannerBit/src/plugins_kind/plugin_
name. Headers are found in ScannerBit/include/gambit/
ScannerBit/plugins_kind/plugin_name. Here plugins_kind is
either scanners or objectives.

Code for all plugins follows the same basic layout
(with plugin_kind either scanner or objective):

#include "plugin_kind_plugin.hpp"

plugin_kind_plugin(plugin_name, version(...))
{

environmental_macros

plugin_constructor {...}

return_type plugin_main(args) {...}

plugin_deconstructor {...}
}

The plugin body can contain three blocks of
code: a plugin_constructor, a plugin_main, and a
plugin_destructor. The utility functions detailed in
the following subsections can be accessed from within
any of these three blocks. The plugin_constructor and
plugin_deconstructor blocks will run when the plugin
is loaded and unloaded, respectively. The code here
can used to initialise, allocate, or deallocate variables
needed by the plugin. The plugin_main block defines the
function that will be run by the plugin. The form of
the arguments for plugin_main required by ScannerBit
depends on whether the plugin is a scanner plugin or
an objective (test function) plugin.

For scanner plugins, plugin_main must take the form

void plugin_main() { code }

where code is the code that actually drives a statistical
sampling algorithm. We give a full example of a minimal
scanner plugin in Appendix D.5.1.

Objective plugins can be further categorised into
‘likelihood’ plugins, which compute likelihoods, and
‘prior’ plugins, which provide the transformation func-
tion needed to implement a ScannerBit prior (see Sec.
3). For likelihood plugins, plugin_main must be of the
form

double plugin_main(const std::vector<double>&)

whereas for prior plugins, the required form is

void plugin_main(const std::vector<double>&,
std::unordered_map<std::string, double>&)

We give a worked example of a minimal likelihood-
oriented objective plugin in Appendix D.6.1.

Each plugin is built in a separate programming envi-
ronment, with its own user-specified library dependen-
cies and compile-time options. A set of environmental_
macros that define the compilation environment can be
declared at the beginning of a plugin. These macros can
be used to define additional compilation flags, required
libraries, required headers, or required entries in the
input YAML file of a scan. The following macros are
available:

reqd_inifile_entries("X","Y",...): Indicates that the
plugin will not be permitted to load unless the YAML
node corresponding to the plugin in question, in the
YAML input file of the scan, contains the options X
and Y. Any number of required entries can be given
as a comma-separated list.

cxx_flags(flag_string): Additional flags to append to
the compilation commands for this plugin.

reqd_libraries("A","B",...): Tells ScannerBit to
search for and link the libraries A and B if using
this plugin. Any number of libraries can be given as
a comma-separated list.

reqd_headers("C","D",...): Specifies that the head-
ers C and D must exist for the plugin to compile;
any number of headers can be given in a comma-
separated list. Like libraries, ScannerBit will auto-
matically search for the specified headers.

If a library or a header listed in reqd_libraries
or reqd_headers is in a non-standard location, or if
ScannerBit is unable to locate it, the location can
be specified in the config/scanner_locations.yaml or
config/objective_locations.yaml configuration files.6 En-
tries in the configuration files follow the format
plugin_name:
plugin_version:

- inc: include_dir
- lib: library_path

This entry gives the locations of the libraries and
headers needed for version plugin_version of the
plugin plugin_name. Note that libraries require full
paths, whereas headers require only an include
directory. The plugin version can be given as
“any_version”, in which case the indicated library
and/or header locations will be applied to every version
of the plugin. If the config/scanner_locations.yaml
or config/objective_locations.yaml configuration
6Note that the current version of ScannerBit locates both li-
braries and headers at cmake time, not at runtime. This means
that cmake must be run (or re-run) and ScannerBit rebuilt after
scanners are built or moved. This is in contrast to the GAM-
BIT backend system, which locates and loads backend libraries
entirely at runtime. It is expected that future versions of Scan-
nerBit will dynamically load the shared plugin libraries, in line
with GAMBIT backend practice.

40

files do not exist, or a relevant entry is miss-
ing from them for a given plugin, then Scan-
nerBit will use any relevant entry it can find
in the files config/scanner_locations.yaml.default
and config/objective_locations.yaml.default.
These .default files ship with ScannerBit and
should not be modified; it is up to the user
to create config/scanner_locations.yaml and/or
config/objective_locations.yaml if they wish to override
or add to any of the defaults.

D.2: Interface to input file

Detailed instructions on how to construct and format
a YAML input file for a scan are given in Sec. 4. To
extract entries from this file, the following functions are
provided to both scanner and objective plugins:

ret_type get_inifile_value<ret_type>(std::string key,
ret_type default_value): Retrieves the value assigned
to the YAML key key. If key is not present in
the relevant part of the YAML file, an optional
default_value to be returned can be specified. If
no default is given, and the key is absent from
the YAML file, ScannerBit will throw an error.
The return value obtained will be interpreted as
a quantity of type ret_type. Note that the key
default_output_path will always return a value; if
this key is not set in the YAML file, the output
defaults to scanner_plugins/plugin_name (where
plugin_name is the name of the plugin calling
get_inifile_value). This is true for both scanner
and objective plugins, although only scanner plugins
are typically expected to generate output files.

YAML::Node get_inifile_node(std::string key): Re-
trieves an entire YAML node with a given key from
the input YAML file.

D.3: Interface to prior object

Both scanner and objective plugins can directly access
the prior transformation object used in any given scan,
via the function get_prior(). See Appendix C for details
of how to use this object.

D.4: Interface to GAMBIT printer system

Within the body of a ScannerBit plugin, the
get_printer() function can be called to obtain an object
that acts as an interface to the GAMBIT the printer
system. GAMBIT’s printer system removes the need for
scanners or their plugins to directly output sampled

parameter values, as this responsibility is taken on by
ScannerBit itself. The printer system also removes any
need for scanners to output total likelihoods, individ-
ual likelihood components or observables; these are to
be printed by objective plugins themselves, or in the
case of GAMBIT, by the likelihood container (which
is in effect just a very sophisticated likelihood plugin).
This arrangement is designed to increase modularity,
by allowing individual likelihoods to print their own
— potentially highly model-specific — results, without
the need to modify any scanner or scanner plugin code.
Printing of scanner-specific quantities (such as posterior
weights or chain multiplicities) must be handled by the
scanner plugins themselves, and these quantities must
be uniquely associated with specific parameter combina-
tions. This is accomplished by assigning each parameter
combination a unique point ID number via which the
printer can associate any future outputs with a specific
parameter combination.

The basic interface is contained within the
printer_interface object returned by get_printer().
This object offers the following useful member functions:

printer* get_stream(std::string name): Gets a pointer
to the printer stream name. If no name is specified,
the main printer is returned.7

void new_stream(std::string name, YAML::Node option):
Create a new printer stream named name, using the
options contained in a YAML node option (which is
itself optional). This typically only needs to be done
on the MPI master process (See Ref. [27]). To then
ensure that all MPI processes are aware of the new
streams, the helper function void assign_aux_numbers
(std::string name1, std::string name2, ...) should
be called by all MPI processes.

bool resume_mode(): Returns true if the printers have
resumed writing to the outputs of a previous scan.
Generally, scanner plugins should take their cue on
whether or not to resume a previous run from the
printers.

At the heart of the printer system are the printer stream
objects. These objects provide the necessary methods
for printing values and associating them with a given
point ID. The printer stream is manipulated using the
following member functions:

void reset(bool force): Deletes output that was al-
ready in the stream. By default, the main printer
cannot be reset; to override this behaviour, set force
to true.

void print(value_type value, std::string name,
int rank, unsigned long long int id): This function

7Note that printer is just a local ScannerBit typedef of the
GAMBIT printer base class.

41

prints the actual output, sending a single datum of
the given value and value_type to the printer. The out-
put is identified as being the quantity name, and cor-
responding to the parameter combination uniquely
identified by the point id and MPI rank.

Scanner-specific output files not associated with the
GAMBIT printer system should typically be saved in
the default scanner output path, which is accessed with
get_inifile_value<std::string>("default_output_path"),
and set to scanner_plugins/plugin_name by default.

D.5: Scanner plugins

Scanner plugins receive access to an additional pair of
utility functions and a class, for obtaining likelihood
functors and scanner information:

unsigned int get_dimension(): Gets the dimension of
the unit hypercube being explored.

void* get_purpose(std::string purpose): Gets a pointer
to a functor that is able to compute the quantity
corresponding to purpose. In GAMBIT scans, pur-
pose is conventionally "LogLike", and the functor
returned will be a direct conduit to the likelihood
container.

like_ptr: A functor class used to contain the output of
get_purpose, primarily designed to act as the local
representation of the likelihood function within a plu-
gin. A like_ptr can be called as if it were a function
with signature double (const std::vector<double>&).
Typically, within a scanner plugin, the scanner passes
a vector of unit hypercube parameter values to the
like_ptr. This functor automatically performs any
required prior transformation, computes the quan-
tities corresponding to its purpose, and sends the
corresponding quantities and hypercube parame-
ters to the printer. The like_ptr member function
disable_external_shutdown() can also be used from
the plugin constructor to tell the objective function
not to carry out its own shutdown procedure, but
to simply set an internal quit flag (referred to in
Ref. [27]) and rely on the scanner to terminate the
scan itself.

D.5.1: Scanner plugin example

Here we give a simple example of a scanner plugin decla-
ration, which closely follows one contained in the Scan-
nerBit source code (ScannerBit/src/scanners/random.cpp).
The example declares a scanner plugin named random,
version 1.0.0-example. This scanner enters number ran-
dom points in the functor corresponding to the purpose
specified by the like YAML file option.

#include "scanner_plugin.hpp"

scanner_plugin(random, version(1, 0, 0, example))
{

reqd_inifile_entries("number");

like_ptr loglike;
int num, dim;

plugin_constructor
{

std::string purpose =
get_inifile_value<std::string>("like")

loglike = get_purpose(purpose);
num = get_inifile_value<int>("number");
dim = get_dimension();

}

int plugin_main(void)
{

std::vector<double> a(dim);
for (int j = 0; j < num; j++)
{

for (int i = 0; i < dim; i++)
{

a[i] = Gambit::Random::draw();
}
loglike(a);

}
return 0;

}

plugin_deconstructor
{

std::cout << "no more plugin" << std::endl;
}

}

The actual scanner code is declared within the
plugin_main function, and randomly draws a parame-
ter point from the hypergrid via the line

a[i] = Gambit::Random::draw();

When the plugin is loaded, the plugin_constructor
function is run, initialising the variables loglike, num,
and dim. The likelihood calculations and printing are
done by the line loglike(a). When the plugin is un-
loaded, the plugin_deconstructor function runs, and
indicates to stdout that the plugin has been un-
loaded. At the top of the plugin declaration, the
reqd_inifile_entries("number") macro indicates that
that the inifile entry number is required in order to use
this scanner (see Sec. 3.2).

D.6: Objective plugins

In addition to the general plugin functions described
in Secs. D.2–D.4, objective functions are provided with
utility functions that can be used to probe the param-

42

eters being scanned, set the hypercube dimension and
print parameters:

std::vector<std::string>& get_keys(): Retrieve the
names of all the parameters being scanned over.

void set_dimension(unsigned int dim): For plugins that
will be used as priors. Sets the hypercube dimension
that will be operated on by the prior to dim.

void print_parameters(std::unordered_map<std::string,
double> map): Prints the contents of a map from
strings to double-precision floating-point variables.
Typically used to print a set of parameters, where
the map associates parameter names with their
values.

D.6.1: Objective plugin example

Here we give a simple example of an objective plugin
declaration contained in the ScannerBit source code
(ScannerBit/src/objectives/examples.cpp). This example
declares a scanner plugin EggBox, version 1.0.0. It re-
turns a likelihood of the form:

P(x, y) =
[
2 + cos

(
π
2x
)

cos
(
π
2 y
)]5

. (D.2)

#include "objective_plugin.hpp"

objective_plugin(EggBox, version(1, 0, 0))
{

std::pair <double, double> length;
unsigned int dim;

plugin_constructor
{

dim = get_keys().size();

if (dim != 2)
{

scan_err << "EggBox: Need two parameters."
<< scan_end;

}
length = get_inifile_value<std::pair<double,
double> > ("length", std::pair<double,
double>(10.0, 10.0));

}

double plugin_main(std::unordered_map
<std::string,double> &map)

{
print_parameters(map);

double params[2];
params[0] = map[get_keys()[0]]*length.first;
params[1] = map[get_keys()[1]]*length.second;

return 5.0*std::log(2.0 +
std::cos(params[0]*M_PI_2) *
std::cos(params[1]*M_PI_2));

}
}

In the plugin_constructor, the hypercube dimension
is obtained by testing how many parameters are returned
from the get_keys() function. If the hypercube dimension
does not match expectations, a runtime error is thrown
with the scan_err and scan_end macros. The constructor
initialises the scale length for each of the hypercube
dimensions with the values assigned to the length key
in the input YAML file. If no values are specified, both
lengths default to 10. The plugin_main function does
the actual likelihood calculation, as it is the function
run by the scanner for every parameter combination.
For each likelihood evaluation, the plugin_main receives
an unordered_map with the parameter names and values,
which it uses to compute the value of the likelihood.
The contents of the map are printed with the command
print_parameters(map).

Appendix E: YAML input file example

Below is an example YAML input file for ScannerBit_
standalone that uses the custom prior defined in Ap-
pendix C, and the scanner and objective plugins declared
in Appendices D.5.1 and D.6.1.
Parameters:

EggBox:
param_0:

range: [0, 1]
param_1:

prior_type: dummy

Scanner:
use_objectives: eggbox_like
use_scanner: random_scanner

objectives:
eggbox_like:

plugin: EggBox
purpose: loglike
length: [12, 12]

scanners:
random_scanner:

plugin: random
point_number: 2000
like: loglike

Printer:
printer: ascii
options:

output_file: "results.txt"

KeyValues:
likelihood:

model_invalid_for_lnlike_below: -1e5

Here, the model chosen for scanning is actually given
as EggBox, which is the name of an objective plugin. Al-
though we have not discussed such usage earlier in this
paper, an objective plugin can in fact even be listed as

43

a model when it provides the likelihood that is to be
scanned, as is done here. This can be useful for avoiding
any need to explicitly define a new model in GAMBIT
format when all one is interested in is computing some
external function provided by an objective plugin. In
this case, the names given to parameters in the YAML
file are entirely arbitrary. Here, the parameter param_0
is defined to have a flat prior in the range [0,1], and
parameter param_1 is defined to use the custom prior
dummy. Next, the objective and scanner plugins are de-
fined in the Scanner section. The eggbox_like objective
is selected with the use_objectives directive, and the
random_scanner scanner is selected as the chosen scanner
via the use_scanner directive. The eggbox_like objective
is defined to use the EggBox plugin, with purpose set
to loglike, and the option length set to [0, 1]. The
random_scanner scanner is set to use the random plugin,
with functions assigned the purpose loglike used to
make up the likelihood function that it will call. The
point_number option is set to ensure that 2000 samples
are taken.

Appendix F: Glossary

Here we explain some terms that have specific technical
definitions in GAMBIT.

backend An external code containing useful functions
(or variables) that one might wish to call (or read-
/write) from a module function.

backend function A function contained in a back-
end. It calculates a specific quantity indicated by
its capability. Its capability and call signature are
defined in the backend’s frontend header.

backend requirement A declaration that a given
module function needs to be able to call a back-
end function or use a backend variable, identi-
fied according to its capability and type(s). Back-
end requirements are declared in module functions’
entries in rollcall headers.

backend variable A global variable contained in a
backend. It corresponds to a specific quantity indi-
cated by its capability. Its capability and type are
defined in the backend’s frontend header.

capability A name describing the actual quantity that
is calculated by a module or backend function. This
is one possible place for units to be noted; the other
is in the documented description of the capability
(see Sec. 10.7 of Ref. [27]).

dependency A declaration that a givenmodule func-
tion needs to be able to access the result of another
module function, identified according to its capabil-

ity and type. Dependencies are declared in module
functions’ entries in rollcall headers.

dependency resolver The component of the GAMBIT
Core that performs dependency resolution.

dependency resolution The process by which GAM-
BIT determines the module functions, backend
functions and backend variables needed and al-
lowed for a given scan, connects them to each others’
dependencies and backend requirements, and
determines the order in which they must be called.

frontend The interface between GAMBIT and a given
backend, consisting of a frontend header plus
optional source files and type headers.

frontend header The C++ header in which the fron-
tend to a given backend is declared.

likelihood container The interface between Scanner-
Bit and the graph of module functions created by
the dependency resolver. It returns the total com-
bined likelihood for any given set of model parameter
values.

model A GAMBIT model is defined as a collection
of named parameters, intended for sampling by a
scanning algorithm according to some prior. The
scanner and prior are both chosen at runtime.

module A subset of GAMBIT functions following a
common theme, able to be compiled into a stan-
dalone library. Although module often gets used
as shorthand for physics module, this term tech-
nically also includes the GAMBIT scanning module
ScannerBit.

module function A function contained in a physics
module. It calculates a specific quantity indicated
by its capability and type, as declared in the mod-
ule’s rollcall header. It takes only one argument,
by reference (the quantity to be calculated), and has
a void return type.

physics module Any module other than ScannerBit,
containing a collection of module functions follow-
ing a common physics theme.

printer The main object handling GAMBIT output.
Multiple versions of this object exist (and new ones
can be written), for handling output to different
formats. Users select which printer they want to use
via the master initialisation file (Sec. 6.6 of Ref. [27])

purpose A tag attached to a request made by a user
in the ObsLikes section of their YAML file. The tag
is used by the scanner and likelihood container
to select which module functions to include in the
combined likelihood and use for directing the scan.

scanner plugin An interface in ScannerBit to an ex-
ternal code for parameter sampling, i.e. a scanner.

test function plugin An interface in ScannerBit to a
test function, which may be used for testing purposes

44

as the objective function for a scan, in place of the
output from the likelihood container.

rollcall header The C++ header in which a given
physics module and its module functions are
declared.

type A general fundamental or derived C++ type, often
referring to the type of the capability of a module
function.

References

1. C. F. Berger, J. S. Gainer, J. A. L. Hewett, and
T. G. Rizzo, Supersymmetry without prejudice,
JHEP 2 (2009) 23, [arXiv:0812.0980].

2. ATLAS: ATLAS Collaboration, Summary of the
ATLAS experiment’s sensitivity to supersymmetry
after LHC Run 1 – interpreted in the
phenomenological MSSM, JHEP 10 (2015) 134,
[arXiv:1508.06608].

3. N. Christensen, R. Meyer, L. Knox, and B. Luey,
Bayesian methods for cosmological parameter
estimation from cosmic microwave background
measurements, Classical and Quantum Gravity 18
(2001) 2677–2688, [astro-ph/0103134].

4. J. Dunkley, M. Bucher, P. G. Ferreira, K. Moodley,
and C. Skordis, Fast and reliable Markov chain
Monte Carlo technique for cosmological parameter
estimation, MNRAS 356 (2005) 925–936,
[astro-ph/0405462].

5. A. Lewis and S. Bridle, Cosmological parameters
from CMB and other data: A Monte Carlo
approach, Phys. Rev. D 66 (2002) 103511,
[astro-ph/0205436].

6. A. Lewis and S. Bridle, CosmoMC++, unpublished
note (2006).
http://cosmologist.info/notes/CosmoMC.pdf.

7. E. A. Baltz and P. Gondolo, Markov Chain Monte
Carlo Exploration of Minimal Supergravity with
Implications for Dark Matter, JHEP 10 (2004) 52,
[hep-ph/0407039].

8. B. C. Allanach and C. G. Lester, Multidimensional
mSUGRA likelihood maps, Phys. Rev. D 73 (2006)
015013, [hep-ph/0507283].

9. P. Bechtle, K. Desch, and P. Wienemann, Fittino,
a program for determining MSSM parameters from
collider observables using an iterative method,
Comp. Phys. Comm. 174 (2006) 47–70,
[hep-ph/0412012].

10. R. Ruiz de Austri, R. Trotta, and L. Roszkowski, A
Markov chain Monte Carlo analysis of CMSSM,
JHEP 5 (2006) 2, [hep-ph/0602028].

11. O. Buchmueller, R. Cavanaugh, et. al., Predictions
for supersymmetric particle masses using indirect

experimental and cosmological constraints, JHEP 9
(2008) 117, [arXiv:0808.4128].

12. J. Skilling, Nested Sampling, in American Institute
of Physics Conference Series (R. Fischer, R. Preuss,
and U. V. Toussaint, eds.) 735 (2004) 395–405.

13. R. Trotta, F. Feroz, M. Hobson, L. Roszkowski,
and R. Ruiz de Austri, The impact of priors and
observables on parameter inferences in the
constrained MSSM, JHEP 12 (2008) 24,
[arXiv:0809.3792].

14. P. Scott, J. Conrad, et. al., Direct constraints on
minimal supersymmetry from Fermi-LAT
observations of the dwarf galaxy Segue 1, JCAP 1
(2010) 31, [arXiv:0909.3300].

15. Planck Collaboration, Planck 2015 results. XIII.
Cosmological parameters, arXiv:1502.01589.

16. K. J. de Vries, E. A. Bagnaschi, et. al., The
pMSSM10 after LHC run 1, Eur. Phys. J. C 75
(2015) 422, [arXiv:1504.03260].

17. F. Feroz, M. P. Hobson, and M. Bridges,
MULTINEST: an efficient and robust Bayesian
inference tool for cosmology and particle physics,
MNRAS 398 (2009) 1601–1614,
[arXiv:0809.3437].

18. Y. Akrami, P. Scott, J. Edsjö, J. Conrad, and
L. Bergström, A profile likelihood analysis of the
Constrained MSSM with genetic algorithms, JHEP
4 (2010) 57, [arXiv:0910.3950].

19. M. Ghulam, A. Faisal, and M. Bilal, Optimization
of Neutrino Oscillation Parameters Using
Differential Evolution, Communications in
Theoretical Physics 59 (2013) 324–330,
[arXiv:1109.2431].

20. F. Feroz, K. Cranmer, M. Hobson, R. Ruiz de
Austri, and R. Trotta, Challenges of profile
likelihood evaluation in multi-dimensional SUSY
scans, JHEP 6 (2011) 42, [arXiv:1101.3296].

21. Y. Akrami, C. Savage, P. Scott, J. Conrad, and
J. Edsjö, Statistical coverage for supersymmetric
parameter estimation: a case study with direct
detection of dark matter, JCAP 7 (2011) 2,
[arXiv:1011.4297].

22. M. Bridges, K. Cranmer, et. al., A coverage study
of CMSSM based on ATLAS sensitivity using fast
neural networks techniques, JHEP 3 (2011) 12,
[arXiv:1011.4306].

23. C. Strege, R. Trotta, G. Bertone, A. H. G. Peter,
and P. Scott, Fundamental statistical limitations of
future dark matter direct detection experiments,
Phys. Rev. D 86 (2012) 023507,
[arXiv:1201.3631].

24. P. Bechtle, J. E. Camargo-Molina, et. al., Killing
the cMSSM softly, Eur. Phys. J. C 76 (2016) 96,

http://arxiv.org/abs/0812.0980
http://arxiv.org/abs/1508.06608
http://arxiv.org/abs/astro-ph/0103134
http://arxiv.org/abs/astro-ph/0405462
http://arxiv.org/abs/astro-ph/0205436
http://cosmologist.info/notes/CosmoMC.pdf
http://arxiv.org/abs/hep-ph/0407039
http://arxiv.org/abs/hep-ph/0507283
http://arxiv.org/abs/hep-ph/0412012
http://arxiv.org/abs/hep-ph/0602028
http://arxiv.org/abs/0808.4128
http://arxiv.org/abs/0809.3792
http://arxiv.org/abs/0909.3300
http://arxiv.org/abs/1502.01589
http://arxiv.org/abs/1504.03260
http://arxiv.org/abs/0809.3437
http://arxiv.org/abs/0910.3950
http://arxiv.org/abs/1109.2431
http://arxiv.org/abs/1101.3296
http://arxiv.org/abs/1011.4297
http://arxiv.org/abs/1011.4306
http://arxiv.org/abs/1201.3631

45

[arXiv:1508.05951].
25. A. Putze and L. Derome, The Grenoble Analysis

Toolkit (GreAT)-A statistical analysis framework,
Physics of the Dark Universe 5 (2014) 29–34.

26. E. E. O. Ishida, S. D. P. Vitenti, et. al.,
COSMOABC: Likelihood-free inference via
Population Monte Carlo Approximate Bayesian
Computation, Astronomy and Computing 13 (2015)
1–11, [arXiv:1504.06129].

27. GAMBIT Collaboration: P. Athron, C. Balázs,
et. al., GAMBIT: The Global and Modular
Beyond-the-Standard-Model Inference Tool,
Eur. Phys. J. C submitted (2017)
[arXiv:1703.xxxxx].

28. GAMBIT Dark Matter Workgroup: T. Bringmann,
J. Conrad, et. al., DarkBit: A GAMBIT module for
computing dark matter observables and likelihoods,
Eur. Phys. J. C submitted (2017)
[arXiv:1703.xxxxx].

29. GAMBIT Collider Workgroup: C. Balázs,
A. Buckley, et. al., ColliderBit: A GAMBIT module
for the calculation of high energy collider
observables and likelihoods, Eur. Phys. J. C
submitted (2017) [arXiv:1703.xxxxx].

30. GAMBIT Models Workgroup: P. Athron, C. Balazs,
et. al., SpecBit, DecayBit and PrecisionBit: GAMBIT
modules for computing mass spectra, particle decay
rates and precision observables, Eur. Phys. J. C
submitted (2017) [arXiv:1703.xxxxx].

31. GAMBIT Flavour Workgroup: F. U. Bernlochner,
M. Chrząszcz, et. al., FlavBit: A GAMBIT module
for computing flavour observables and likelihoods,
Eur. Phys. J. C submitted (2017)
[arXiv:1703.xxxxx].

32. GAMBIT Collaboration: P. Athron, C. Balázs,
et. al., Global fits of GUT-scale SUSY models with
GAMBIT, Eur. Phys. J. C submitted (2017)
[arXiv:1703.xxxxx].

33. GAMBIT Collaboration: P. Athron, C. Balázs,
et. al., A global fit of the MSSM with GAMBIT,
Eur. Phys. J. C submitted (2017)
[arXiv:1703.xxxxx].

34. GAMBIT Collaboration: P. Athron, C. Balázs,
et. al., Status of the scalar singlet dark matter
model, Eur. Phys. J. C submitted (2017)
[arXiv:1703.xxxxx].

35. N. Metropolis, A. W. Rosenbluth, M. N.
Rosenbluth, A. H. Teller, and E. Teller, Equation
of state calculations by fast computing machines, J.
Chem. Phys. 21 (1953) 1087–1092.

36. D. MacKay, Information Theory, Inference, and
Learning Algorithms. Publisher: Cambridge
University Press. ISBN: 0521642981, 2003.

37. R. M. Neal, Probabilistic Inference Using Markov
Chain Monte Carlo Methods, Technical Report
CRG-TR-93-1, Department of Computer Science,
University of Toronto, 1993.

38. W. K. Hastings, Monte carlo sampling methods
using markov chains and their applications,
Biometrika 57 (1970) 97–109.

39. J. A. Christen and J. Weare, A general purpose
sampling algorithm for continuous distributions
(the t-walk), Bayesian Anal. 5 (2010) 263.

40. J. Goodman and J. Weare, Ensemble samplers with
affine invariance, Comm. App. Math. Comp. Sci. 5
(2010) 65.

41. A. Gelman and D. B. Rubin, Inference from
iterative simulation using multiple sequences,
Statistical Science 7 (1992) 457–472.

42. R. Storn and K. Price, Differential evolution: A
simple and efficient heuristic for global
optimization over continuous spaces, Journal of
Global Optimization 11 (1997) 341–359.

43. K. Price, R. M. Storn, and J. A. Lampinen,
Differential evolution: a practical approach to global
optimization. Springer, 2005.

44. S. Das and P. Suganthan, Differential evolution: A
survey of the state-of-the-art, Evolutionary
Computation, IEEE Transactions on 15 (2011)
4–31.

45. K. Price, Differential evolution, in Handbook of
Optimization (I. Zelinka, V. Snášel, and
A. Abraham, eds.), vol. 38 of Intelligent Systems
Reference Library, pp. 187–214. Springer Berlin
Heidelberg, 2013.

46. K. Price, R. M. Storn, and J. A. Lampinen, The
differential evolution algorithm, in Differential
Evolution: A Practical Approach to Global
Optimization, Natural Computing Series,
pp. 37–134. Springer Berlin Heidelberg, 2005.

47. D. Zaharie, A comparative analysis of crossover
variants in differential evolution, Proceedings of
IMCSIT 2007 (2007) 171–181.

48. D. Zaharie, Statistical properties of differential
evolution and related random search algorithms, in
COMPSTAT 2008 (P. Brito, ed.), pp. 473–485.
Physica-Verlag HD, 2008.

49. E. Mezura-Montes, J. Velázquez-Reyes, and C. A.
Coello Coello, A comparative study of differential
evolution variants for global optimization, in
Proceedings of the 8th annual conference on
Genetic and evolutionary computation, GECCO
’06, (New York, NY, USA), ACM (2006) 485–492.

50. D. Zaharie, Influence of crossover on the behavior
of differential evolution algorithms, Applied Soft
Computing 9 (2009) 1126 – 1138.

http://arxiv.org/abs/1508.05951
http://arxiv.org/abs/1504.06129
http://arxiv.org/abs/1703.xxxxx
http://arxiv.org/abs/1703.xxxxx
http://arxiv.org/abs/1703.xxxxx
http://arxiv.org/abs/1703.xxxxx
http://arxiv.org/abs/1703.xxxxx
http://arxiv.org/abs/1703.xxxxx
http://arxiv.org/abs/1703.xxxxx
http://arxiv.org/abs/1703.xxxxx

46

51. J. Brest, S. Greiner, B. Boskovic, M. Mernik, and
V. Zumer, Self-adapting control parameters in
differential evolution: A comparative study on
numerical benchmark problems, Evolutionary
Computation, IEEE Transactions on 10 (2006)
646–657.

52. F. Neri and V. Tirronen, Recent advances in
differential evolution: a survey and experimental
analysis, Artificial Intelligence Review 33 (2010)
61–106.

53. A. Cuoco, B. Eiteneuer, J. Heisig, and M. Kramer,
A global fit of the γ-ray galactic center excess
within the scalar singlet Higgs portal model,
arXiv:1603.08228.

54. A. Beniwal, F. Rajec, et. al., Combined analysis of
effective Higgs portal dark matter models, Phys.
Rev. D 93 (2016) 115016, [arXiv:1512.06458].

55. J. M. Cline, K. Kainulainen, P. Scott, and
C. Weniger, Update on scalar singlet dark matter,
Phys. Rev. D 88 (2013) 055025,
[arXiv:1306.4710].

56. K. Cheung, Y.-L. S. Tsai, P.-Y. Tseng, T.-C. Yuan,
and A. Zee, Global Study of the Simplest Scalar
Phantom Dark Matter Model, JCAP 1210 (2012)
042, [arXiv:1207.4930].

57. Y. Mambrini, Higgs searches and singlet scalar
dark matter: Combined constraints from XENON
100 and the LHC, Phys. Rev. D 84 (2011) 115017,
[arXiv:1108.0671].

58. C. P. Burgess, M. Pospelov, and T. ter Veldhuis,
The Minimal Model of nonbaryonic dark matter: a
singlet scalar, Nucl. Phys. B 619 (2001) 709–728,
[hep-ph/0011335].

59. J. McDonald, Gauge singlet scalars as cold dark
matter, Phys. Rev. D 50 (1994) 3637–3649,
[hep-ph/0702143].

60. V. Silveira and A. Zee, Scalar Phantoms, Phys.
Lett. B 161 (1985) 136–140.

61. Particle Data Group: K. A. Olive et. al., Review of
Particle Physics, Chin. Phys. C 38 (2014) 090001.

62. Particle Data Group: K. A. Olive et. al., Review of
Particle Physics, update to Ref. [61] (2015).
http://pdg.lbl.gov/2015/tables/rpp2015-sum-
gauge-higgs-bosons.pdf.

63. P. Scott, Pippi – painless parsing, post-processing
and plotting of posterior and likelihood samples,
Eur. Phys. J. Plus 127 (2012) 138,
[arXiv:1206.2245].

http://arxiv.org/abs/1603.08228
http://arxiv.org/abs/1512.06458
http://arxiv.org/abs/1306.4710
http://arxiv.org/abs/1207.4930
http://arxiv.org/abs/1108.0671
http://arxiv.org/abs/hep-ph/0011335
http://arxiv.org/abs/hep-ph/0702143
http://pdg.lbl.gov/2015/tables/rpp2015-sum-gauge-higgs-bosons.pdf
http://pdg.lbl.gov/2015/tables/rpp2015-sum-gauge-higgs-bosons.pdf
http://arxiv.org/abs/1206.2245

	Introduction
	Package description
	Statistics and scanning
	Priors and sampling distributions
	Built-in one-dimensional priors
	Built-in multi-dimensional priors
	Additional built-in priors

	Plugins

	Setup and input file options
	Input file solarized@blueParameters section
	Input file solarized@bluePriors section
	Input file solarized@blueScanner section
	ScannerBit standalone executable

	Simple scanners
	The random sampler
	The grid and square_grid scanners
	The raster scanner
	The toy_mcmc scanner

	The postprocessor
	Markov Chain Monte Carlo
	The GreAT software
	GreAT–ScannerBit interface

	Ensemble MCMC
	T-Walk

	Nested sampling
	Differential evolution
	Algorithmic details
	Mutation
	Crossover
	Selection
	Advanced mutation and crossover strategies
	Self-adaptive differential evolution

	The Diver package
	Design and invocation
	Adaptive differential evolution: jDE and lambdajDE
	Discrete parameters and parameter-space partitioning
	Population diversity and duplicate individuals
	Approximate posterior and evidence estimates
	ScannerBit interface

	Scanner performance comparisons
	MultiNest
	Diver
	T-Walk
	GreAT
	The effect of dimensionality on performance
	Scanning efficiency
	Posterior sampling
	Discussion

	Conclusions
	Acknowledgements
	Sources, options and outputs of the Diver package
	Sources
	Run options
	Output formats

	Scanner options and outputs
	Postprocessor
	GreAT
	T-Walk
	MultiNest
	Diver

	Custom priors
	Plugin Declaration and Interface
	Plugin declaration
	Interface to input file
	Interface to prior object
	Interface to GAMBIT printer system
	Scanner plugins
	Scanner plugin example

	Objective plugins
	Objective plugin example

	YAML input file example
	Glossary

