BLUE:

a software package to combine correlated estimates of
physics observables within ROOT using the Best Linear
Unbiased Estimate method

Program manual
Version 2.0.0

Richard Nisius
September 15, 2014

Max-Planck-Institut fiir Physik (Werner-Heisenberg-Institut)
Fohringer Ring 6, D-80805 Miinchen, Germany,
http://www.mpp.mpg.de/ nisius,
Richard.Nisius@Qmpp.mpg.de

Abstract

The combination of correlated estimates of a number of observables is a common task
in particle physics. This is frequently performed using the Best Linear Unbiased Estimate
(BLUE) method.

Given the widespread usage of the ROOT analysis package, a flexible ROOT imple-
mentation of the BLUE mathematical framework has been written, and is described in
this manual. The software is freely available from the corresponding hepforge project page.
Given it is based on ROOT, it is distributed under the GNU Lesser Public License.

Contents

B.6.1

Getters for active estimates, uncertainties and observables|

[3.6.2 Getters for the consistency of the combination|

[3.6.3 Getters for the results of the combination|.

B.6.4

Getters for specific solving methods|

B81

Data structure independent utilities for a pair of estimates

B.8.2

Data structure dependent utility for a pair of estimates|

[3.8.3

Utility to compare to the maximum likelihood approach|

B84

Utility to inspect instable matrix inversions|

B85

Utilities for publishing|

4 Examples|

[> Conversion of input files|

6] r . ation
[7__Conclusions|
[A_Release notes|

25

27

28

28

35

1 Introduction

The combination of a number of estimates for a single observable is discussed in Ref. [1]. Here,
the term estimate denotes a particular outcome (measurement) of an experiment based on an
experimental estimator of the observable, which follows a probability density distribution (pdf).
The particular estimate obtained by the experiment may be a likely or unlikely outcome given
that distribution. Repeating the measurement numerous times under identical conditions, the
estimates will follow the underlying pdf of the estimator. The analysis makes use of a x?
minimisation to obtain the combined values. In Ref. [I], this minimisation is expressed in the
mathematically equivalent BLUE language.

Provided the estimators are unbiased, when applying this formalism the Best Linear Unbi-
ased Estimate of the observable is obtained with the following meaning: Best: the combined
result for the observable obtained this way has the smallest variance; Linear: the result is a
linear combination of the individual estimates; Unbiased Estimate: when the procedure is
repeated for a large number of cases consistent with the underlying multi-dimensional pdf, the
mean of all combined results equals the true value of the observable. The extension to more
than one observable is described in Ref. [2].

For many years, a freely available Fortran based software [3] to perform the combination for
a number of estimates and for several observables was widely used. The implementation of the
BLUE method described here is integrated into the ROOT analysis framework [4].

The equations to solve the problem for the general case of m estimates of n observables with
m > n can be found in Ref. [2]. They are implemented in the software presented, but are not
repeated here. However, the simple case of two correlated estimates of the same observable
is discussed in some detail. This is because already for this case the main features of the
combination can easily be understood. For further information and the derivation of the formulas
listed below see Ref. [5].

Let x; and 5 with variances o7 and 2 be two estimates from two unbiased estimators of the
true value x of the observable, and p the total correlation of the two estimators. For Gaussian
uncertainties the two-dimensional estimator pdf reads:

1 1 1

P(X,X5) = . 1
(X1, Xe) 2mo V2moa V1 — p? (1)

1 (Xl — [L‘T)2 (Xg — CL‘T)2 2p(X1 — $T)(X2 — $T)
oo (T)}

01 03 0109
Without loss of generality it is assumed that the estimate x; stems from an estimator X; of zr
that is as least as precise as the estimator X, yielding the estimate x5, such that z = o9/0y > 1.
In this situation the BLUE z of z7 is:

r=(1-p)z+ By,

where (3 is the weight of the less precise estimate, and, by construction, the sum of weights is
unity. The variable z is the combined result and o2 is its variance, i.e. the uncertainty assigned
to the combined value is o,. To investigate the improvement on the precision of x when adding
the information of x5 to the more precise estimate from x, i.e. to decide whether it is worth
combining, the variable o,/0; is investigated. This variable quantifies the uncertainty of the

combined value in units of the uncertainty of the more precise estimate, i.e. 1 — 0, /07 is the
relative improvement achieved by also using x5 from the less precise estimator.

The two quantities and their derivatives with respect to the parameters p and z are given
in Eqs. , see Ref. [5]. They are valid for —1 < p < 1 and z > 1, but for p = z = 1. The
resulting variations of the combined value are given in Egs.

T — T 1—pz 1—pz

F = 372—$1:1—2p2+22:(1—pz)2+z2(1—p2) 2)
or 22(1 = p?)
o 1 —2pz + 22 3)
ap z(1 - 2?)
dp (1—2pz+22) @
O _ 1 ! 5
B p(l+ 2%) — 2z (6)
0z (1 —2pz+ 22)2
6‘;—? B 1 — p2
9z (1- pz)J (1—2pz+ 22)3 ™)
o = -y ®)
0 0
0T = e O)

The resulting § and o,/01, as functions of p, and for various z values (Eq. |2 and Eq. 3]) are
shown in Figures and A few features of the variables 8 and o, /0, are discussed below
that are important to understand the results of the combination.

The value of 3 is smaller or equal to 0.5, because otherwise x5 would be the more precise
estimate. Since the denominator in Eq. 2]is positive for all allowed values of p and z, the function
for 5 turns negative for p > 1/z as shown in Figure . As can be seen from the second term
in Eq. 2 the value of 8 can be interpreted as the difference of the combined value from the more
precise estimate in units of the difference of the two estimates. When f is negative, the signs
of the numerator and denominator are different. This means the value of x lies on the opposite
side of z; than x5 does, or in other words, the combined value lies outside the range spanned by
the two estimates.

Since the denominator in Eq. 2] and Eq. |3 are identical, and the denominator of Eq. [2| equals
the numerator of Eq. 3| plus an additional term that is positive for all values of p and z, the value
of 0, /oy is always smaller than 1 as shown in Figure . Again this is expected, since including
the information from the estimate x5 should improve on the knowledge of z, which means on its
precision o,. Not surprisingly, the value of o, /0y is exactly one for p = 1/z, i.e. when § = 0. In
this situation, the information from x5 is ignored in the linear combination, and consequently
r =z and o, = o0y.

The derivatives of and o, /0, with respect to p as functions of p, and for various z values
(Eq. [l and Eq. [f)) are shown in Figures [1(c)| and [I(d). The equations for 8 and o, /o, this

4

time as a function of z and for various p values, are shown in Figures 2(a)| and 2(b)l Finally,
the derivatives of § and o,/0; with respect to z as functions of z, and for various p values
(Eq. [6] and Eq. [7]) are shown in Figures and 2(d)} These derivatives can be used to evaluate
the sensitivity of the combined result to the imperfect knowledge on both the correlation p
and the uncertainty ratio z of the individual estimators. With this information the stability of
the combined result can be assessed and a decision can be taken on whether to refrain from
combining. This decision should only be based on the parameters of the combination but not
on the outcome for a particular pair of estimates x; and xo. This is because these parameters
are features of the underlying two-dimensional pdf of the estimators, whereas the two specific
values are just a pair of estimates, i.e. a single possible likely or unlikely outcome of results.

This manual is organised as follows: The software structure is outlined in Section [2] followed
by the description of the user interface given in Section [3] A number of examples provided are
discussed in Section[d] The conversion of input files for the Fortran software [3] to functions to be
used with this ROOT implementation is explained in Section [5] Some hints on the installation
and usage of the software are given in Section [6] Conclusions are drawn in Section [7], followed
by a list of changes made to the software given in Appendix [A]

2 Software structure

This section explains the general strategy for the usage of the package. The details of the
functions mentioned here are given in Section [3] The functionality is implemented in a ROOT
class called Blue that derives from TObject. No attempt has been made to override the default
implementations provided by this, but for what is described below.

The usage of the software is separated in up to three steps.

1. During the first step the constructor is called and the individual estimates and their uncer-
tainties, as well as all correlation matrices of the uncertainty sources are filled. Optionally,
also names for estimates, uncertainty sources and observables can be filled. When this
has been completed, the input stream is closed automatically and the filling functions are
disabled.

2. In the second (optional) step individual estimates and/or uncertainty sources can be dis-
abled, or correlation assumptions can be altered for the combination to follow by calling
the corresponding Set. .. () functions. If this step is used, before a further combination
can be performed, the input to the combination has to be fixed by the user by calling
FixInp() indicating the end of the selection. After this call a number of Print...()
functions are available for digesting the input and the selections made.

3. In the third step the actual combination is performed by calling (FixInp() if step 2 is
omitted and) one of the Solve...() functions. A number of Print...() functions are
provided for digesting the result for the observables.

The second and third steps can be performed as often as wanted. In this case, after any com-
bination, first the input has to be freed for further selections by calling either ReleaseInp() or
ResetInp(). The difference of these two options is discussed below.

3 Details of the interface

This section describes the details of the interface. All arguments passed to member functions are
declared as const, but for those that are return values as described below. However, this fact
is not mentioned in the description of the function prototypes. This means arguments denoted
as Int_t in fact are const Int_t. In contrast, functions that are const, i.e. those that do not
alter the state of the object, are marked as such.

3.1 Constructor

Blue(Int_t NumEst, Int_tNumUnc, Int_tNumObs, Int_t* IWhichObs, Int_t* IWhichFac):
Blue(Int_t NumEst, Int_tNumUnc, Int_tNumObs, Int_t* IWhichObs):

Blue(Int_t NumEst, Int_tNumUnc, Int_t* IWhichFac):

Blue(Int_t NumEst, Int_tNumUnc): The first constructor instantiates the object for a num-
ber of estimates (NumEst), uncertainty sources (NumUnc) and observables (NumObs). The array
IWhichObs indicates which observable a given estimate is determining. The array IWhichFac
defines different groups to be considered in systematic variations of the correlation assumptions,
when using SolveScaRho (), see below. The input for the example of four estimates, ten uncer-
tainty sources for two observables, where the first two estimates determine the first observable,
and the second two estimates determine the second observable is: NumEst = 4, NumUnc = 10,
NumObs = 2, and IWhichObs = {0,0,1,1}. If these fall into two groups of estimates, e.g. (0,
2) and (1, 3), which e.g. could stem from different experiments, and for which the correlation
assumption should be scanned differently for the pairs of estimates from the same experiment
(0, 2) and (1, 3), or from different experiments (0, 1), (0, 3), (2, 1) and (2, 3), the following info
should be provided:

IWhichFac = : (10)

—_ O =
O~ = =
el)
—_ = O =

where the array IWhichFac should contain this matrix in row wise storage. The values on the
diagonal are not relevant, the off-diagonal elements should start from zero and run up to ¢ =
NumFac-1, where NumFac is the number of groups desired.

In the case of a single observable, i.e. if NumObs = 1, the information in IWhichQObs is redun-
dant and ignored. In this case the more simple constructors can be used instead. If also possible
scans in SolveScaRho () should be performed simultaneously for all pairs of estimates, the last
constructor is sufficient.

3.2 Fill input

void FillEst(Int_t¢, Double t*z): The estimate ¢ with the index in the following range:
7 =0, ..., NumEst-1 is filled. The array x must contain NumUnc + 1 entries, the value of the
estimate and the individual uncertainties in the following form: x = {Value,og,01,...,0%,..}
with kp.x = NumUnc - 1. The software assumes that oy is the statistical uncertainty and oy
with £ > 0 are systematic uncertainties.

If for a source k a negative entry o, < 0 is supplied, this value is considered a percentage
uncertainty. During filling this is converted from o, — —oy - Value / 100.

void FillCor(Int_t k, Double_t* x): The correlation matrix of the uncertainty £ with indices
in the range k£ = 0, ..., NumUnc-1 is filled. For the example of NumEst = 3 the correlation matrix
for any uncertainty source k is:

Voo Vor Voo
V = Vio Viin Via | . (11)
Voo Var Voo

The array x must contain the row wise storage of this matrix, i.e. for the above example it should
read x = Vo, Vo1, Voo, Vio, Vi1, Via, Vag, Va1, Vas. The user should ensure the matrix to be a valid
correlation matrix, i.e. the elements to be within bounds, the matrix to be symmetric, and that
the diagonal elements to be unity, i.e. the following conditions should be fulfilled: V;; = 1 and
-1<V; =V, <1lfori#j, forallij=0,.. NumEst - 1. If the matrix is not symmetric,
or off diagonal elements are outside their range of validity, the input is not consistent. In this
case, an error message is issued and the software will refrain from combining. In any case, the
diagonal elements will be forced to unity by the software.

Given the above relations, the entire information is contained in one half of the off diagonal
elements (e.g. those marked in red in Eq. . To account for this, this function can also be called
with k replaced by —k (for k # 0). In this case the array z should only contain the significant
elements again in row-wise storage, i.e. in the above case z = Vj, Voo, V1o is expected by the
software. Again, if elements are outside their range of validity, the input is not consistent, an
error message is issued and the software will refrain from combining.

void FillCor(Int_tk, Double trho): Frequently uncertainty sources are either uncorrelated
or fully correlated amongst all estimates. In this case, only a single value, namely the overall
correlation obeying —1 < rho = p; < 1 is significant. A call to this function will store a cor-
relation matrix with V;; = 1 and Vj; = V;; = p;, for i # j, for 7,5 = 0,...,NumEst - 1 for the
source k. If the value of p; is not within bounds, the input is not consistent, an error message
is issued and the software will refrain from combining.

The following functions allow to assign names to estimates, uncertainties and observables.
They are implemented as TString objects. The length of each name is arbitrary, however all
printing functions and display routines are optimised for names with equal length of seven char-
acters. The type of characters can be freely chosen, however those requiring math mode should
be avoided when using LatexResult (), see below. For all functions it is the responsibility of the
user to ensure the correct length of the arrays of names, i.e. names for NumEst estimates, NumUnc
uncertainties and NumObs observables should be provided. The functions can only be called be-
fore the end of input of estimates and correlations is recognised by the software. Therefore, it is
recommended to first fill the names if wanted.

void FillNamEst(TString* NamEst): A call to this function will store the names of the esti-
mates.

void FillNamUnc(TStringx NamUnc): A call to this function will store the names of the uncer-
tainties.

void FillNamObs(TString* NamObs): A call to this function will store the names of the ob-
servables.

3.3 Fix and free input

void FixInp(): The input is fixed for solving and the calculation of several matrices is initiated.

void ReleaseInp(): The input is freed for additional selections. Any further selection starts
from the situation at the last call to FixInp().

void ResetInp(): The input is freed for additional selections. However, in this case any further
selection starts from the original user input.

3.4 Solver
The default method for solving the problem is:

void Solve(): The BLUE combination for the presently active estimates and uncertainties is
performed.

In the following a number of specific Solve. .. () functions are discussed which themselves
call FixInp() and Solve() several times. As a consequence, after calling one of these functions
the output of the print functions related to estimates and uncertainties in most cases will be
different from the one after the last user call to FixInp(). In contrast, since these functions
use ReleaselInp(), the situation in terms of active estimates, uncertainties and correlation as-
sumptions remains unchanged. Exceptions are: SolvePosWei(), where estimates resulting in
negative weights are disabled at return, and SolveMaxVar (), where the correlations of the esti-
mates for various uncertainty sources are scaled, see SetRhoFacUnc() for details. For the user
to get to a clean situation after using these exceptions it is recommended to use ResetInp()
before subsequent selections.

void SolveRelUnc(Double_tDx): The BLUE combination is performed for the presently active
estimates and uncertainties, of which at least one has to be a Rel-ative Unc-ertainty. Iterations
are made until the relative difference of the combined value with respect to the one from the
previous iteration falls below Dx percent, or until twenty iterations have been reached.

The uncertainty sources can be an arbitrary mixture of relative or absolute uncertainties, see
SetRelUnc(...) for how to steer this. The term absolute uncertainty means that the value of
the uncertainty is identical for all possible values of the estimator pdf, i.e. it is independent of
the actual value of the estimate. This means it is the same for the actual estimate, any combined
value and the true value. Therefore, irrespectively whether it was calculated for the estimate
it also applies to the combined value. In contrast, a relative uncertainty (e.g. of some percent)
depends on the actual value of xr. Therefore, for relative uncertainties, the uncertainty assigned

to the estimate, o; = 0;(;), is formally incorrect, since it should correspond to the uncertainty of
the estimator pdf, i.e. o; = o;(@r), which has a different value. This means that, in the presence
of relative uncertainties, the BLUE method is only an approximation. In this approximation,
after each iteration the uncertainty is replaced by the expected uncertainty of the true value -,
approximated by the one of the combined value x. In general, this is a good approximation, see
Ref. [5] for a detailed discussion and a number of examples. A utility is provided to compare
this to the result obtained from a simplified maximum likelihood approach, see InspectLike ().

The procedure of this solver works as follows: First a BLUE combination is performed.
Then the uncertainties are adjusted based on the result and the next iteration is performed.
This is repeated until convergence is reached. For each estimate ¢ and each relative uncertainty
k the dependence of the contribution from this source to the covariance matrix can be defined
by the user as a second order polynomial in x. The function reads % = ag + a1 |z| + ay 2°.
See SetRelUnc(...) for the details of the implementation and Ref. [6] for an example of a non
linear situation.

void SolveAccImp(Int_t ImpFla, Double_tDx) const:

void SolveAccImp(Double_tDx) const: For each observable a combination of the estimates
is performed Acc-ording to their Imp-ortance. For the first implementation, three definitions of
importance of the estimates j are implemented given the most precise estimate is 7. The second
uses ImpFla = 0. The following options are implemented:

1) ImpFla = 0 means sorted by decreasing 1 — o, /0y calculated from Eq. [3| using 12 = ij

2) ImpFla = 1 means sorted by decreasing absolute BLUE weights |o]|

3) ImpFla = 2 means sorted by decreasing inverse variance 1/ O'JQ».

The options differ in the correlations that are taken into account. The first accounts for the
correlation of the pair of estimates, the second for those of all estimates and the third completely
ignores all correlations.

The software suggests which estimates to combine until the uncertainty of the combined
value is never improved by more than Dx percent by adding further estimates. First a BLUE
combination for the presently active estimates and uncertainties is performed. For each active
observable the related estimates are sorted by importance. According to this list one estimate at
a time is added to the most precise one and the combination is performed, while all less impor-
tant estimates of this observable are disabled. In contrast, all estimates of other observables are
kept active such that the full correlation is preserved. This is repeated for all active observables.
The outcome can be digested by a call to PrintAccImp().

void SolveScaRho(Int_t RhoFla, Double_t*MinRho, Double_t*MaxRho) const:
void SolveScaRho(Int_tRhoFla) const:
void SolveScaRho() const: This function performs a scan in the correlation assumptions for
all active estimates, uncertainty sources k, and observables, while using NumFac groups (see
the constructor) of multiplicative factors r, performing ten steps each in the range defined by
MaxRho > r > MinRho, while decreasing r. For non of the active uncertainties the correlations
are allowed to be declared as changed or reduced, see SetRho...Unc() below for the defini-
tions. While the groups ¢ are always scanned independently, the sources k are scanned either
independently for RhoFla = 0, or simultaneously for RhoFla = 1.

Given that the sources of uncertainty k£ in general are uncorrelated, because otherwise

quadratically adding their contributions to calculate the total uncertainty would not be correct,
an independent scan, i.e. RhoFla = 0 is recommended. See Ref. [5] for a detailed discussion. If
this is wanted, and the variation for all sources and groups (k,¢) should be done in the range
1 > r > 0 with respect to the initially provided correlation, the last implementation should be
used. Otherwise the boundaries should be given in the following form: MinRho (k=0 (=0, k=0
/=1, ..., k=NumUnc-1 ¢=NumFac-1).

Manipulations with many groups ¢ that may end up in manipulating single entries of the
covariance matrix, can easily lead to instable matrix inversions. The software is protected against
this.

The procedure works as follows. First a combination is performed for the active estimates
and uncertainties treating all correlations as scaled correlations, while using any given scale
provided by preceding calls to SetRhoFacUnc (), and for » = 1. Then a scan is performed and
the differences of the observables and their uncertainties with respect to the values from the
initial result are stored. Finally, the outcome can be digested by a call to PrintScaRho (), where
inversion failures are indicated by values of -1.00 for both differences.

void SolveInfWei() comnst: This function is only available for a single observable. It yields
the same result as a call to Solve() but also calculates the information weights defined in
Ref. [7]. The weights calculated are: the BLUE weights «;, the intrinsic weights, i.e. the inverse
variances scaled by the variance of the combined result, the weight assigned to the correlation,
the marginal weights and finally the relative weights. These weights are defined as follows:

BLUE = o4
. o2
mtrinsic = —3
(o
j
correlation = 1 — X;intrinsic
. a2
marginal = 1— —
O-m,mfj
. a;
relative = 2]
2jlay]
Here o7, ; denotes the variance of the combination when using all m estimates, but the esti-

mate j. The outcome can be digested by a call to PrintInfWei(). NOTE: Given the reduction
of the combined uncertainty at both sides of the maximum of Eq. , see Figure , absolute
weights are useful for ranking the importance of measurements for the combination. However,
the probabilistic interpretation of relative weights has to be made with care, see Ref. [7] for a
detailed discussion. Here, relative weights are mostly implemented to enable comparisons.

The following functions implement two alternative solving methods. NOTE: It is recom-
mended to NOT use these functions when achieving scientific results because of the weakness of
the concepts. See Ref. [5] for a detailed discussion of the consequences and a numerical example.
Here, they are only implemented to enable comparisons.

void SolvePosWei() const: For each observable a combination is performed by including only
estimates of this observable that have Pos-itive Wei-ghts and all other estimates of different

10

observables. First a BLUE combination for the presently active estimates and uncertainties
is performed. Then, all estimates that determine this observable, and have negative BLUE
weights, are disabled and the next combination is performed. This is repeated until no estimates
with negative weights remain.

void SolveMaxVar(Int_t IFuRho) const: This functions is only available for a single observ-
able. Three methods are implemented to Max-imise the Var-iance of the combined result by
changing, i.e. reducing the correlations of the systematic uncertainties in an artificial, but con-
trolled way, see Ref. [7]. This is achieved by multiplying all covariance entries (i.e. the off
diagonal elements of the contributions to the covariance matrix for the uncertainty source k) for
k > 0 by factors f;;i, thereby changing the initially assigned correlations. This procedure is not
applied to the source k = 0, which is assumed to be the statistical uncertainty, which is either
uncorrelated between estimates, or the correlations are exactly known, because they have been
determined by the experiments as e.g. in Ref. [8]. The following options are implemented:

1) IFuRho = 0 means f;jr = f for all ¢, 7, k,
2) IFuRho = £ 1 means fi;;, = fi for all 4, j,
3) IFuRho = 2 means f;;; = fi; for all k.

Since for each source k and pair i, j of estimates the dependence of the relative improvement
in the uncertainty follows Figure , the factors f;;, are obtained by a scan in the value of
the respective factor using the range 1 — 0. The maximum is guaranteed to exist for p;;; =
1/zijx > 0. Clearly, if the correlation initially assigned is such that it lies to the left of this
point, the initial situation already corresponds to the maximum to be calculated, i.e. the real
maximum is not attempted to be found in this procedure. See Ref. [5] for a detailed discussion
of the consequences and a numerical example.

The algorithm works as follows: For IFuRho = 0, the global factor f is found by a scan
from 1 — 0. For IFuRho = + 1, the f; are obtained independently IFuRho = 1, (consecutively
IFuRho = -1) for all sources k > 0, i.e. when determining fj the values for sources k" with k" # k
are set to unity (their already found values). Finally, for IFuRho = 2 the f;; are found consec-
utively, while using the already determined values for i < i and j' < j. Given this procedure,
the covariance matrix can be manipulated in such a way that the inversion gets unstable. The
software has been protected against this occurrence. Finally, the outcome can be digested by a
call to PrintMaxVar ().

3.5 Setters

All setters are implemented in such a way that ¢ and k always refer to their initial values for
estimates and uncertainty sources that were given by the user during the filling step. This way
the user does not need to keep track of the actual index an estimate or uncertainty has within
the presently active list. The setters only work if the input is not fixed.

void SetActiveEst(Int_ti): Enable estimate ¢, i.e. it will be used in subsequent calls to
Solve().

void SetActiveUnc(Int_t k): Enable uncertainty k, i.e. it will be used in subsequent calls to

11

Solve().

void SetInActiveEst(Int_t¢): Disable estimate ¢, i.e. it will not be used in subsequent calls
to Solve().

void SetInActiveUnc(Int_t k): Disable uncertainty k, i.e. it will not be used in subsequent
calls to Solve().

void SetRhoValUnc(Double_t RhoVal):

void SetRhoValUnc(Int_t k, Double_t RhoVal):

void SetRhoValUnc(Int_tk, Int_t/, Double_tRhoVal): The first implementation of this
function will set the correlations of all active uncertainty sources and all groups ¢ to RhoVal.
This value should be within the range —1 < RhoVal < 1. The second will do the same, but only
for the source k. The third one only applies to the group ¢ of source k. See the constructor for
the definition of the groups /.

void SetNotRhoValUnc():

void SetNotRhoValUnc(Int t k): The first implementation of this function will revert to the
originally provided correlations of all active uncertainty sources. The second will do the same,
but only for the source k.

void SetRhoFacUnc(Double_t RhoFac):

void SetRhoFacUnc(Int_t k, Double_t RhoFac):

void SetRhoFacUnc(Int_tk, Int_t/, Double_tRhoFac): The first implementation of this
function will scale the originally provided correlations of all active uncertainty sources and all
groups ¢ by a factor RhoFac. This factor should be within the range —1 < RhoFac < 1. The
second will do the same, but only for the source k. The third one only applies to the group /¢
of source k. See the constructor for the definition of the groups ¢. Clearly, uncorrelated sources
are not affected by this.

void SetNotRhoFacUnc():

void SetNotRhoFacUnc(Int_t k): The first implementation of this function will revert to the
originally provided correlations of all active uncertainty sources. The second will do the same,
but only for the source k.

The following functions implement the so called reduced correlationd] NOTE: It is recom-
mended to NOT use these functions when achieving scientific results because of the weakness of
the concept. See Ref. [5] for a detailed discussion of the consequences and a numerical example.
Here, they are only implemented to enable comparisons.

Reduced correlations assume that for each pair (i,7) of estimates and a given source of uncertainty k the
smaller of the individual uncertainties, e.g. o1 < o2, is fully correlated, and the remainder is uncorrelated. This
replaces the covariance p12,01502r by the square of the smaller of the individual uncertainties a%k for this source,
which is equivalent to assuming the correlation to amount to the ratio of the smaller to the larger uncertainty,
piak = 01k /02, = 1/ 2.

12

void SetRhoRedUnc():

void SetRhoRedUnc(Int_t k): For all active uncertainty sources and all fully correlated pairs
of estimates, the first implementation of this function will replace the correlation by the reduced
correlation. The second will do the same, but only for the source k.

void SetNotRhoRedUnc():

void SetNotRhoRedUnc(Int_t k): The first implementation of this function will revert to the
originally provided correlations of all active uncertainty sources. The second will do the same,
but only for the source k.

By construction, changed- scaled- and reduced correlations are mutually exclusive. Conse-
quently, for each source of uncertainty the use of only one of the options is supported by the
software.

The following functions allow to steer which uncertainties are taken as relative and which as
absolute in subsequent calls to SolveRelUnc(...).

void SetRelUnc():

void SetRelUnc(Int_t k): The first implementation of this function will declare all active un-
certainty sources as relative uncertainties. The second will do the same, but only for the source
k. In this implementation the default behaviour of the detailed implementation discussed next
is used for all estimates and the respective uncertainty source.

void SetRelUnc(Int_ti, Int_tk, Double_tx ActCof): For each estimate ¢ and each uncer-
tainty source k the dependence of the variance on the combined value x is defined by using

the coefficients from the array ActCof = {ap,ai,as} in the second order polynomial: o2 =

ap + ay x| + ag ?.

In the default implementation it is assumed that the statistical uncertainty is proportional
to v/N and the estimate to be proportional to N, where N is the number of events. Finally,
the systematic uncertainties are assumed to be linear in |z|. Consequently, in this case only one
coefficient each is different from zero. For the statistical uncertainty (k = 0) this is a; = 0% /|xi],
and for all systematic uncertainties k > 0 it is ay = o /x?. If this behaviour is valid for the
combination under investigation, a single call to void SetRelUnc() should be used, otherwise
individual user defined functions have to be provided. If this is needed, for any uncertainty
source k the functions for all estimates ¢ have to be given. The user should ensure that the
coefficients are such that the functional form cannot lead to negative uncertainties, otherwise
the combination can not be performed and the input will not be fixed.

void SetNotRelUnc():

void SetNotRelUnc(Int_t k): The first implementation of this function will declare all active
uncertainty sources as absolute uncertainties and revert to the initially provided values. The
second will do the same, but only for the source k.

13

3.6 Getters
3.6.1 Getters for active estimates, uncertainties and observables

The following functions give access to the actual numbers of active estimates, uncertainties and
observables. Also for the observables the index n refers to the original index. This information is
only available after a call to FixInp (), otherwise, if not stated differently, the return value is zero.

Int_t GetActEst() const: Returns the number of active estimates.

Int_t GetActEst(Int_tn) const: Returns the number of active estimates for the active ob-
servable n.

Int_t GetActUnc() const: Returns the number of active uncertainties.

Int_t GetActObs() const: Returns the number of active observables. Although the interface
does not allow to disable observables, still this number will differ from the value of NumObs origi-
nally supplied, whenever all estimates determining one of the observables have been deactivated
by calling SetInActiveEst ().

The following functions give access to the names of the active estimates, uncertainties and
observables. This information is only available after a call to FixInp(), otherwise, as well as for
inactive estimates, the return value is NULL.

TString GetNamEst (Int_t¢) const: Returns the name of the active estimate ¢.
TString GetNamUnc (Int_t k) const: Returns the name of the active uncertainty k.
TString GetNamObs (Int_tn) const: Returns the name of the active observable n.

The following functions give access to the actual lists of estimates, uncertainties and observ-
ables. Again, this information is only available after a call to FixInp(). In this case the return
value is 1 otherwise it is 0. These functions also return a pointer to the first element of an array
of Int_t values. The structures are filled always starting from element 0. The dimensions are
dynamical, i.e. they depend on the number of active estimates, uncertainties and observables
that may well differ from the dimensions originally supplied to the constructor of the class. As
a consequence, if the structures are defined by the user and filled using the original dimensions,
the last part of the structures will contain senseless non zero values, whenever estimates or un-
certainty sources are disabled and the functions are called a second time.

Int_t GetIndEst (Int_t* IndEst) const: Returns the list of active estimates. The dimension
is: IndEst(GetActEst()).

Int_t GetIndUnc(Int_t* IndUnc) const: Returns the list of active uncertainties. The dimen-

sion is: IndUnc(GetActUnc()).

14

Int_t GetIndObs (Int_t* IndObs) const: Returns the list of active observables. The dimension
is: IndObs(GetActObs()).

Int_t GetPreEst(Int_tn) const: Returns the index i of most Pre-cise Est-imate for the active
observable n. Because zero is a valid number for an estimate, in case of failure, a value of minus
one is returned.

The following functions give access to various quantities for the active estimates and uncer-
tainties. See above for their availability and return values. These functions come in pairs and
return a pointer to either a TMatrixD or the first element of an array of Double_t values. The
structures are filled always starting from element (0,0) or 0. The dimensions of the vectors and
matrices are given below, the dimension of the arrays should be the product of the number of
columns and rows of the matrices. The user has to take care of the proper dimension of the
structure in the calling function. Also here the dimensions are dynamical (see above for the
consequences).

Int_t GetEst (TMatrixD* UseEst) const:
Int_t GetEst (Double_t*RetEst) const: Returns the matrix of the active estimates in the form

they were supplied in the user call to Fil1Est ().
The dimension is: UseEst(GetActEst(),GetActUnc()+1).

Int_t GetEstVal (TMatrixD* UseEstVal) const:
Int_t GetEstVal (Double_t*RetEstVal) const: Returns the values of the active estimates.
The dimension is: UseEstVal(GetActEst(),1).

Int_t GetEstUnc(TMatrixD* UseEstUnc) const:
Int_t GetEstUnc (Double_t* RetEstUnc) const: Returns the values of the total uncertainties
of the active estimates. The dimension is: UseEstUnc(GetActEst(),1).

Int_t GetCov(TMatrixD* UseCov) const:

Int_t GetCov(Double_t*xRetCov) const: Returns the covariance matrix of the estimates. The
dimension is: UseCov(GetActEst(),GetActEst()).

Int_t GetCovInvert (TMatrixD* UseCovI) const:
Int_t GetCovInvert (Double_t*RetCovI) const: Returns the inverse of the covariance matrix
of the estimates. The dimension is: UseCovl(GetActEst(),GetActEst()).

Int_t GetRho(TMatrixD* UseRho) const:
Int_t GetRho(Double_t*RetRho) const: Returns the correlation matrix of the estimates. The
dimension is: UseRho(GetActEst(),GetActEst()).

Int_t GetParams (Int_t ifl, TMatrixD* UseParams) const:
Int_t GetParams(Int_t ifl, Double t*RetParams) const: Returns the matrices of parame-

ters for hypothetical pairwise combinations. See PrintParams() for the meaning of ifl. The
dimension is: UseParams(GetActEst(),GetActEst()).

15

3.6.2 Getters for the consistency of the combination

The following functions give access to information that is only available after a call to Solve. .. (),
otherwise, if not stated differently, the return value is zero.

Double_t GetChiq() const: Returns the x? value of the result, i.e. the quantity minimised in
the combination.

Int_t GetNdof () const: Returns the number of degrees of freedom Ny, i.e. the difference of
the number of active estimates and active observables.

Double_t GetProb() const: Returns the x? probability P(x?, Ngot) of the result. The x? prob-
ability is the integral of the y? probability distribution from the observed x? value up to infinity.
In constitutes the probability for an even larger x? to occur for any other combination [9].

Double_t GetPull(Int_ti) const: Returns the pull of the estimate i. The pull is defined as
the difference of the estimate and the observable, divided by the square root of the difference of
the variances of the two.

3.6.3 Getters for the results of the combination

The following functions give access to various quantities for results for the active observables
that are obtained from the combination of the active estimates given their active uncertainties.
Again, this information is only available after a call to Solve(). Also here, this is indicated by
the return value of the integer function, which is 1 if successful, i.e. Solve() was called, and 0
otherwise. These functions also come in pairs.

Int_t GetCovRes (TMatrixD* UseCovRes) const:

Int_t GetCovRes (Double_t* RetCovRes) const: Returns the covariance matrix of the observ-
ables. The dimension is: UseCovRes(GetActObs(),GetActObs()).

Int_t GetRhoRes (TMatrixD* UseRhoRes) const:
Int_t GetRhoRes (Double_t* RetRhoRes) const: Returns the correlation matrix of the observ-
ables. The dimension is: UseRhoRes(GetActObs(),GetActObs()).

Int_t GetWeight (TMatrixD* UseWeight) const:
Int_t GetWeight (Double t*RetWeight) const: Returns the matrix of the BLUE weights of
the estimates of the various observables. The dimension is: UseWeight(GetActEst(),GetActObs()).

Int_t GetResult (TMatrixD* UseResult) const:

Int_t GetResult (Double_t*RetResult) const: Returns the matrix of the results of the ob-
servables in the form expected for the filling of the estimates in FillEst () described above.
Each observable is stored in one row, where the first element is the value, followed by the indi-
vidual uncertainties. The dimension is: UseResult(GetActObs(),GetActUnc()+1).

16

Int_t GetUncert (TMatrixD* UseUncert) const:
Int_t GetUncert (Double_t*RetUncert) const: Returns the matrix of the total uncertainties
of the observables. The dimension is: UseUncert(GetActObs(),1).

Int_t GetInspectLike (TMatrixD* UseInsLik) const:

Int_t GetInspectLike (Double_t*RetInsLik) const: Returns the matrix containing the re-
sults of InspectLike(). See the description of InspectLike() for the matrix content. The
dimension is: UseUncert(GetActObs(),7).

3.6.4 Getters for specific solving methods

The following functions give access to various quantities for results of specific Solve. .. () meth-
ods. This information is only available after a call to the respective solver. Also here, this is
indicated by the return value of the integer function. In case of failure, if not stated differently,
the return value is zero.

Int_t GetAccImpLasEst (Int_tn) const: Returns the index i of the last estimate Acc-ording
to Imp-ortance to be used for the active observable n, based on the result of SolveAccImp(. ..,
Dx). Because zero is a valid number for an estimate, in case of failure, a value of minus one is
returned.

Int_t GetAccImpIndEst(Int_tn, Int_t*IndEst) const: Returns the list of estimates sorted
Acc-ording to Imp-ortance for the active observable n, based on the result of SolveAccImp().

Int_t GetNumScaFac() const:
Returns the number of groups of correlations ¢ defined in the constructor.

Int_t GetNumScaRho() const:
Returns the number of steps in the correlations used in SolveScaRho, which is ten.

Int_t GetScaVal(Int_tn, TMatrixD*UseScaVal) const:

Int_t GetScaVal(Int_tn, Double_t*RetScaVal) const: Returns the result of SolveScaRho ()
for the differences in the values of the observable n. Starting from ¢ = 0, for each group, the
differences for all sources k are reported in consecutive rows. The dimension is:

UseScaVal(GetActUnc()*GetNumScaFac(),GetNumScaRho()).

Int_t GetScaUnc(Int_tn, TMatrixD#*UseScalUnc) const:

Int_t GetScaUnc(Int_tn, Double_t*RetScalUnc) const: Returns the result of SolveScaRho ()
for the differences in the uncertainties of the observable n in the same order as for GetScaVal ().
The dimension is: UseScaUnc(GetActUnc()*GetNumScaFac(),GetNumScaRho()).

3.7 Print out

The software provides some print out during the various steps. Naturally, printing more infor-
mation helps developing the user functions, but afterwards it only distracts from the important

17

information. Consequently, the level of details reported to the user can be steered.

void SetPrintLevel(Int_tp): Set the level of details for the print out 0 < p < 2, with in-
creasing details for increasing values of p.

void SetQuiet(): On top of the general steering, there exist some print out in FixInp() and
Solve() that cannot be switched off by SetPrintLevel(). A call to this function will also
switch off those, which is useful for iterative use of Solve().

void SetNotQuiet(): Will revert to the original print out in FixInp() and Solve().

There exist five groups of Print functions.

e A group that simply prints a matrix or an array of Double_t values in a given format.

A group that returns information related to the presently active estimates and uncertain-
ties. Given the flexibility of the Set functions described above, they only reflect the correct
status after a call to FixInp(). Consequently, they are disabled until this function has
been called.

e A group that returns information related to the result for the observables. They only
reflect the correct status after a call to Solve (). Consequently, they are disabled until this
function has been called.

e A group that consists of just one function that shows the present status of the input and
the results. Depending on the print level it calls a number of functions from the above
groups.

e A group that returns the finding of specific Solve. .. () functions described above. Again
they are only available after the respective function has been called.

These functions are described in the following Sections.

3.7.1 Print functions for matrices and arrays

void PrintMatrix(TMatrixD* TryMat) const:

void PrintMatrix(TMatrixD# TryMat, TString ForVal) const:

void PrintMatrix(TMatrixD* TryMat, Int_tNumRow, Int_t NumCol) const:

void PrintMatrix(TMatrixD* TryMat, Int_t NumRow, Int_tNumCol, TString ForVal) const:
The first pair of functions prints the matrix TryMat, where the format is ForVal if provided, or
%5.2f otherwise, and where the numbers of rows and columns are derived from the matrix. For
the second pair, the numbers of rows and columns can be restricted to smaller values.

void PrintDouble(Double_t* TryDou, Int_tNumRow, Int_tNumCol) const:

void PrintDouble(Double_t* TryDou, Int_tNumRow, Int_tNumCol, TString ForVal) const:
Same as PrintMatrix, but for an array of Double_t values. Here, the numbers of rows and
columns have to be specified. Internally, the array is stored in a matrix and PrintMatrix is

18

called.

3.7.2 Print functions for active estimates

Again, also for the print functions, the indices i, k refer to the original estimate and uncertainty
source indices, respectively.

void PrintListEst() const: Prints the list of the active estimates.

void PrintListUnc() const: Prints the list of the active uncertainties.

void PrintNamEst() const: Prints the names of the active estimates.

void PrintNamUnc() const: Prints the names of the active uncertainties.

void PrintEst(Int_ti) const: Prints the information for the active estimate 7.

void PrintEst() const: Prints the information for all active estimates.

void PrintCofRelUnc() const:

void PrintCofRelUnc(Int_t k) const: The first implementation of this function will print for
all active estimates the coefficients for all active and relative uncertainties. The second will do

the same, but only for the uncertainty source k.

void PrintCor(Int_t k) const: Prints the correlation matrix of the active uncertainty source

k.
void PrintCor() const: Prints the correlation matrix of all active uncertainty sources.

void PrintCov(Int_t k) const: Prints the contribution of the uncertainty source k to the co-
variance matrix of the active estimates.

void PrintCov() const: Prints the covariance matrix of the active estimates.

void PrintCovInvert() const: Prints the inverted covariance matrix of the active estimates.
void PrintRho() const: Prints the correlation matrix of the active estimates.

void PrintCompatEst() const:

void PrintCompatEst(TString FilNam) const: Prints the pair wise compatibility of the es-
timates of the same observable given their correlation. The compatibility is based on a x? and
the corresponding probability using P(x?, Ngot = 1). The x? is defined as x* = (z; — 22)?/ (07 +

05 —2 p12 01 09). For a detailed discussion see Ref. [5]. If the second implementation is used, the
x? and P(x?,1) distributions for all observables are stored in two files called FilNam_ComEst_-

19

ChiQua.pdf and FilNam_ComEst_ChiPro.pdf. For an example see Figure

void PrintParams(Int_t ifl) const: Prints the matrices of parameters for hypothetical pair-
wise combinations of the estimates i and j provided they determine the same observable. If not,
for this pair zero is returned instead. Given the symmetry, only the lower half of the matrix
is filled. The parameter printed depends on the value of ifl. For ifl = 0 the ratio of the
uncertainties is returned, i.e. 0;/0; with j > 4. This ratio corresponds to z if o; > ¢; and 1/z
otherwise. For 1 < ifl < 6 the result of Egs. is returned.

void PrintPull(Int_ti) const: Prints the pull of the active estimate 1.

void PrintPull() const: Prints the pull of all active estimates.

3.7.3 Print functions for active observables

void PrintListObs() const: Prints the list of active observables.

void PrintNamObs() const: Prints the names of the active observables.

void PrintCovRes() const: Prints the covariance matrix of the results for all observables.
void PrintRhoRes() const: Prints the correlation matrix of the results for all observables.

void PrintWeight () const: Prints the weight matrix of the results for all observables (Columns)
and estimates (Rows).

void PrintResult() const: Prints the result for each observable. First the linear combination
of the individual estimates is given. Then the combined values for the observables are listed to-
gether with the full breakdown of their uncertainties. Finally, the separation into the statistical
uncertainty (k = 0) and the total systematic uncertainty (the square root of the quadratic sum
of the contributions from all sources k > 0) is given.

void PrintCompatObs() const: Prints the pair wise compatibility of the observables given
their correlation. For the definition of the y? used see the explanation of PrintCompatEst ().
Obviously, here this compatibility only makes sense if the observables should coincide, i.e. they
relate to the same physics parameter. If that is not the case this information should be ignored.

void PrintChiPro() comnst: Prints the y? together with the number of degrees of freedom
Ngot, and the x? probability P(x?, Ngof) of the result, see the corresponding Getters for the
definitions.

void PrintInspectLike() const: Prints the results from InspectLike(n). For each observ-

able n for which InspectLike(n) was called, the result from the likelihood and the BLUE
method are listed.

20

3.7.4 Print functions for the overall status

void PrintStatus() const: Prints the status of input and output depending on the state like:
fixed or solved and the print level.

3.7.5 Print functions for specific solving methods

void PrintAccImp() const: Prints the findings of SolveAccImp(..., Dx). The order of im-
portance is given. For each observable, the parameters for the hypothetical pair-wise combi-
nations of each of its estimate with the most precise one is given. The change is reported for
the combined value and its uncertainty while including the estimates one by one according to
importance in the combination. Finally, the list of estimates to be used in the combination is
given that corresponds to the relative improvement Dx requested.

void PrintScaRho() const:
void PrintScaRho(TString FilNam) const: Prints the differences in the values and uncer-
tainties for all observables obtained in the correlation scan performed by SolveScaRho(). The
matrix with the remaining correlation groups ¢ is given. The ranges in r used are listed per
uncertainty source k, and group of correlation /. The number of inversion failures is reported
if needed. For each observable the differences in the values and uncertainties are reported per
source k and for all ten values of r. Finally, the total differences are reported with the following
meaning. For the independent scan, i.e. RhoFla = 0 the total is the quadratic sum of all sources
ignoring inversion failures, i.e. entries reported as -1.00. In contrast, for the simultaneous scan,
i.e. RhoFla = 1, the total coincides with the last line of the previously accumulated result.
When the second implementation is used the result of the scan is displayed in a pair of figures
per observable and group of estimates. These figures contain the observed shifts in the values
and uncertainties respectively for three steps of the scan, namely step four, seven and ten. The
names of the files are FilNam_ScaRho_XxxYyy_Zzz_0bs_N.pdf. Here Xxx is Ind for indepen-
dent variations per source k of uncertainty, i.e. RhoFla = 0, and Sim for simultaneous variations,
i.e. RhoFla = 1. In addition, Yyy is Mor if there are more than one group ¢ of estimates to be
scanned, and One otherwise. Finally, Zzz is either Val for the values or Unc for the uncertainties,
and N is the value of n stored in the format %i. An example is shown in Figure

void PrintInfWei() const: Prints the information weights defined above in the description
of SolveInfWei() for the active estimates.

void PrintMaxVar() const: Prints the findings of SolveMaxVar (). The variance of the com-
bined result and the correlation matrix of the estimates are given before and after the maximi-
sation of the variance. In addition listed are the number of times an unstable matrix inversion
has been detected. Finally, the fitted factors are given, depending on the value of IFuRho used
in the call to SolveMaxVar (IFuRho).

21

3.8 Utilities

For the special situation of two estimates of a single observable discussed above, the data can
be inspected more closely. Two sets of functions are implemented. The first set is independent
of the data structure. The second set (at present containing only a single function) works on a
pair of active estimates. Both sets are discussed in turn.

For the situation of relative uncertainties, SolveRelUnc () is only an approximate solution.
A utility is provided to compare this to the result obtained from a simplified maximum likelihood
approach. In addition, a utility is provided to inspect the situation in the case of instable matrix
inversions. Finally, for publishing the results a number of utilities to create HTEX and PDF
output are provided. These utilities are discussed in turn.

3.8.1 Data structure independent utilities for a pair of estimates

The first two functions can be used for arbitrary values of p and z, to either evaluate Eqs.

or to produce figures analogous to Figures [L(a)H2(d)}

Double_t GetPara(Int_t ifl, Double trho, Double tzva) const: Returns for given values
of rho = p and zva = z the values of Eq. if1+1.

Double_t FunPara(Double t*x, Double t*par) const: This function implements the possi-
bility to use GetPara() as a TF1 function. The meaning of the parameters is as follows: for all
cases par[1] = ifl. For the situation that z is a parameter, and p is the function variable, as
e.g. in Eq. [} par[0] = z and x[0] = p. For the situation that p is a parameter, and z is the
function variable, as e.g. in Eq. [7] the situation is reversed, i.e. par [0] = p and x[0] = z.

For the user to implement this as a TF1 function the following notation should be used:
TF1* Func = new TF1(FuncName,this,&Blue::FunPara,xlow,xhig,2,” Blue” ” FunPara”);
Only when this syntax is followed the normal ROOT methods for TF1 functions can be used.

Finally, the last utility exploits the characteristics of an arbitrary pair of estimates.

void DrawSens (Double_t xvl, Double_txv2, Double_tsvl, Double_t sv2, Double_t rho,
TString FilNam) const:

void DrawSens(Double_t xvl, Double_t xv2, Double_t svl, Double_t sv2, Double_trho,
TString FilNam, Int_t IndFig) const: The required input is zvl = x1, xv2 = 29, svl = o7,
sv2 = 09, Tho = p, see Section [l| for details. The same up and down variations of p and z
as discussed below for InspectPair() are performed, and the result is visualised in a figure
similar to Figure /] This figure is finally stored in the file FilNam_InsPai.pdf. For the first
implementation, i.e. for IndFig = 0 only a combined figure is shown, for IndFig = 1 also
individual figures are drawn and stored in the files FilNam_InsPai_X.pdf, with X = a, ...,
h.

3.8.2 Data structure dependent utility for a pair of estimates

void InspectPair(Int ti,Int tj) const:
void InspectPair(Int_ti,Int_tj, TString FilNam) const:

22

void InspectPair(Int_ti,Int tj, TString FilNam, Int_t IndFig) const: The pair of ac-
tive estimates 7, j is inspected more closely. When the second or third implementation is invoked
also DrawSens (see above) is called for this pair. The name of the outputfile will be FilNam_-
Ni_Nj_InsPai.pdf where Nj is the value of the estimate j stored in the format %i.

First, the compatibility of the estimates is evaluated. If the estimates are not consistent,
no combination should be performed, see Ref. [5] for a detailed discussion of this issue. Then
the actual combination is performed and the values of Egs. are reported. Subsequently,
the parameters p and z are varied by about £10% in the following way. A variation of 0.1 is
attempted in p. In addition, the variation is restricted to stay within —0.99 < p < 0.99 such
that, depending on the initial value of p, the actual range may be smaller. Similarly, for z an
upward variation to z,, = 1.1z is performed. The downward variation to zg4, = 0.9 2 is further
restricted to not fall below the minimum of zg, = 1.01. This ensures that z; remains the more
precise estimate. The combination is repeated for all possible pairs of values using the three
cases each for (zan, 2, Zup) and (pan, P, pup)- All nine results and the observed range in x and o,
are reported.

3.8.3 Utility to compare to the maximum likelihood approach

void InspectLike(Int_tmn) const:

void InspectLike(Int_tmn, TString FilNam) const: This function is only available after the
problem has been solved by any of the Solve. .. () methods. It inspects the result of a likelihood
fit for the observable n. For the second implementation, the result will also be stored in file called
FilNam_InsLik_Obs_N.pdf, where N is the value of n stored in the format %i. The findings can
be printed using PrintInspectLike().

In principle, for a pair of estimates, the most likely true value x1 can be obtained from a
maximum likelihood fit to Eq. |1} in which for each value of zr the corresponding value for o;(zT)
is used, i.e. in which also the non Gaussian nature is taken into account. This equation can be
generalised to NumEst estimates and NumObs observables.

There exist dedicated software package that implement the multi-dimensional maximum
likelihood method. Here, for the purpose of investigating the quality of the approximation of
SolveRelUnc (), a more simple one-dimensional approach per observable n is used. Using Eq.
for each estimate i determining this observable, the difference in the numerator takes the correct
form z; — x7. In contrast for the remaining estimates, which determine observables m! = n the
numerator is replaced by x; — x, i.e. the combined value from the BLUE method is used instead
of the true value of that observable. This retains the correlations to the estimates that do not
determine the observable under investigation, but reduces the likelihood to a one-dimensional
function of xr. Clearly, when only combining estimates determining the same observable, this
approximation is exact.

The method works as follows. After performing the BLUE combination, for each observable,
the corresponding likelihood is constructed and maximised. The results achieved this way are
compared to the ones from the BLUE method, i.e. x7 is compared to . When using any
solver but SolveRelUnc (), the uncertainties are Gaussian, and the maximum likelihood and the
BLUE results coincide. Otherwise they in principle differ, see Ref. [5] for a detailed discussion
and a number of examples.

Finally, the results are stored in a matrix that contains one row per observable. Within each

23

row the results are listed in the following order: Tr, 27 10w, ZT high, T, Tlow, Thigh, LikFla, i.e. the

result of the likelihood together with its uncertainties is listed first, followed by the correspond-

ing numbers for the BLUE method. Finally, the value of LikFla has the following meaning:
1) LikFla = 1 one active observable, and at least one relative uncertainty

2) LikFla = 2 several active observables and at least one relative uncertainty

3) LikFla = 11 one active observable, and no relative uncertainties
)

4) LikFla 12 several active observables and no relative uncertainties

It is worth noticing that the observed size of the differences for a specific combination is of
limited importance. It explicitly only applies to the present set of estimates under study. It
has no general meaning for the unknown underlying multi-dimensional pdf, but signals that for
the particular case the choice of the method of combination matters, see Ref. [5] for a detailed
discussion.

3.8.4 Utility to inspect instable matrix inversions

Int_t InspectResult() const:

For some of the solving methods, especially when manipulating individual elements of the covari-
ance matrix, unstable matrix inversions can occur. At present, three non exclusive situations are
distinguished. Firstly, an individual uncertainty of an observable gets negative or its evaluation
results in a —nan value, secondly the same happens to the total uncertainty of an observable, and
thirdly the total uncertainty of an observable is larger than the one of its most precise estimate.
The return value of the function indicates which of the situations occurred. Starting from an
initial return value of zero, in the first, second and third situation, -1, -10 and -100 is added to
it.

For a user call to Solve(), in any of these cases a message is issued by the software. If
this occurs, the situation can be inspected by setting the print level to greater than zero and
calling InspectResult (), which will also report the occurrence of negative Eigenvalues of the
covariance matrix if present.

3.8.5 Utilities for publishing

void LatexResult(TString FilNam) const:

void LatexResult(TString FilNam, TString ForVal, TString ForUnc, TString ForWei,
TString ForRho, TString ForPul) const: Creates a IXIEX file FilNam. tex with a number of
tables. The tables provided are: a table with the active estimates together with the observables,
a table with the correlations of the estimates, a table with the blue weights and the pulls and
finally, for NumObs>1, a table with the correlations of the observables.

The first implementation uses default formats ForXxx where Xxx stands for the Val-ues, Unc-
ertainties, Wei-ghts, Correlations (Rho), and finally the Pul-Is. The formats used are: %5.2f for
values and uncertainties, and %4.2f for weights, correlations and pulls. If these are not suit-
able for the case under study they can be individually provided by the user using the second
implementation. After creation, this file can be processed from the shell using the local KTEX
implementation.

24

void DisplayResult(Int_tn, TString FilNam) const:

void DisplayResult(Int_tn, TString FilNam, TString ForVal, TString ForUnc) const:
Displays the result for an active observable n. A function FilNam_DisRes_0bs_N.cxx is created,
where N is the value of n stored in the format %i. This function, after compiling (like any of the
examples listed below) produces a file FilNam_DisRes_0Obs_N.pdf with a figure containing the
active estimates that determine the observable n together with the result of the combination.
For the definition of the formats ForXxx see the description for LatexResult ().

void DisplayAccImp(Int_tn, TString FilNam) const:

void DisplayAccImp(Int_tn, TString FilNam, TString ForVal, TString ForUnc) const:
Displays the result of SolveAccImp(..., Dx) for an active observable n. Similar to the function
DisplayResult (), a function FilNam_AccImp_Obs_N.cxx is created, where N is the value of n
stored in the format %i. This function, after compiling (like any of the examples listed below)
produces a file FilNam_AccImp_Obs_N.pdf with a figure containing the results of the successive
combinations of SolveAccImp(Dx) for the observable n. In this figure, the combined result
corresponding to the suggested list of estimates given the value of Dx is shown in red. For the
definition of the formats ForXxx see the description for LatexResult ().

4 Examples

To demonstrate the usage of the software a number of example functions are provided. They
reproduce the numerical values of all combinations performed in the respective publication (but
for differences that are explained below). In some cases a few more combinations are performed
based on the information contained in the original publications. In addition, the functions show
examples of how to retrieve the results into local data structures. The examples are listed in the
following:

B_NIMA_270_110.cxx(): Function that reproduces all results discussed in Ref. [1].
B_NIMA_500_391.cxx(Int_tFlag): Function that reproduces all results discussed in Ref. [2].
B_EPJC_72_2046.cxx(int Flag): Function that reproduces all results discussed in Ref. [§].

B_EPJC_74_3004.cxx(int Flag): Function that reproduces the results of Table 2 of Ref. [5].
The results from Table 1 and 3 of Ref. [5] can be obtained using B_Peelles.cxx(0-4) and
B_arXiv_1305_3929.cxx(1). The results for the comparisons of absolute and relative uncer-
tainties listed in the text of Section 5 of Ref. [5] are provided by running the corresponding
examples.

B_Peelles.cxx(): Function that reproduces Peelle’s Puzzle, see Refs. [10, 11]E], and the addi-
tional scenarios discussed in Ref. [5].

2The puzzle was introduced in an internal memorandum [10]. The originally used numerical values can be
found in Ref. [11].

25

B_arXiv_1107_5255.cxx(int Flag): Function that reproduces the 2011 (v3) combination of
the Tevatron results on the top quark mass [12].

B_arXiv_1305_3929.cxx(int Flag): Function that reproduces the 2013 (v2) combination of
the Tevatron results on the top quark mass [13].

B_arXiv_1307_4003.cxx(int Flag): Function that reproduces the results in Ref. [7]. (A dif-
ferent minimum with respect to the one quoted in Table 6 is found for the maximisation of the
variance for IFuRho = 3. See the code for further details.)

B_arXiv_1403_4427.cxx(int Flag): Function that reproduces the 2014 combination of the
Tevatron and LHC results on the top quark mass [14].

B_arXiv_1407_2682.cxx(int Flag): Function that reproduces the 2014 combination of the
Tevatron results on the top quark mass [I5]. (There is a typo for the uncertainty on the top
quark mass stemming from the lepton modelling quoted in Table 3. The value should read
0.01 rather than 0.07, i.e. the value found is 0.007. This has a negligible impact and has been
confirmed by the authors)

B_ATLAS_CONF_2012_095.cxx(int Flag): Function that reproduces the 2012 combination of
the LHC results on the top quark mass [16].

B_ATLAS_CONF_2012_134.cxx(int Flag): Function that reproduces the 2012 combination of
the LHC results on the cross-section of top quark pair production [17].

B_ATLAS_CONF_2013_033.cxx(int Flag): Function that reproduces the 2013 combination of
the LHC results on the W-boson polarisation in top quark pair events [I8]. (Some discrepancies
with respect to the published Tables 6 and 7 were found and are under investigation with the
authors.)

B_ATLAS_CONF_2013_098.cxx(int Flag): Function that reproduces the 2013 combination of
the LHC results on the single top quark cross-section in the t-channel [19] using the BLUE
method with relative uncertainties.

B_ATLAS_CONF_2013_102.cxx(int Flag): Function that reproduces the 2013 combination of
the LHC results on the top quark mass [20]. (A typo for the x? value quoted in Table 4 was
found and has been acknowledged by the authors.)

B_ATLAS_CONF_2014_012.cxx(int Flag): Function that reproduces the 2014 combination of
the LHC results on the ¢t charge asymmetry [2I]. (A typo has been found for the correlation
assumption for the W+jet modelling quoted in Table 1 that should read 100%. This has been
acknowledged by the authors. However, using the quoted 50% instead would have a very small
numerical impact.)

B_PRD41_982.cxx(int Flag): Function that reproduces the combination of Ref. [20] using the

26

BLUE method with individual relative uncertainties.

B_PRD88_052018.cxx(int Flag): Function that reproduces the combination of the Tevatron
measurements of the W-Boson mass of Ref. [22] using the BLUE method with and without
reduced correlations.

For each example B_name. cxx a script B_name. inp is provided that enables the creation of an
output file for that example by typing: root -b < B_name.inp > B_name.out. To further ease
the usage, two shell scripts BlueOne and BlueAll are provided. A single example is run by typing
BlueOne B_name at the shell prompt. To use all input files B_name. inp in the current directory
simply type BlueAll at the shell prompt. To verify the absence of programming mistakes within
the user software that can be detected by the compiler also CompOne and CompAll are provided.
They should be used in an analogous way to BlueOne and BlueAll, but this time to compile
B_name.cxx. Finally, also LtexOne and LtexAll are provided. They should be used in an
analogous way to BlueOne and BlueAll, but this time to run IXTEX on all *.tex files from
B_name.

5 Conversion of input files

To facilitate the conversion for users that have been working with the Fortran software [3], a
utility is provided that takes a corresponding ASCII input file and converts it to a function that
is similar to the examples listed above.

void ForttoBlue(TString FilNam, TString ForVal, TString ForRho) const: This func-
tion uses the input file FilNam. in and creates a file B_FilNam. cxx together with a corresponding
steering file B_FilNam.inp. Afterwards B_FilNam.cxx can be expanded by the user and finally,
it should be used the same way as the examples described in Section [4

Running the Fortran software on FilNam.in should give the same result than what is ob-
tained using B_FilNam.cxx. The format statement ForVal applies to the write statements for
the estimates and uncertainties, and ForRho to the entries in the correlation matrices. See
LatexResult () for a more detailed description of the meaning. Since this utility performs
formatted reading from a file, strict requirements on the content of FilNam.in are imposed,
e.g. blanks in names are not supported. The full list of requirements is listed when running
ForttoBlue(). The function ForttoBlue () reports the findings during execution, such that in
the case of failures the input files should be easily adaptable.

The utility works for the FilNam. in files that I use. In addition, to ease the usage, an example
input file EPJC_72_2046Fort.1in is provided together with ForttoBlue.inp. After creating the
function B_EPJC_72_2046Fort.cxx with ForttoBlue (), the result from the Fortran software on
EPJC_72_2046Fort.in, as well as those from running the newly created function for Flag = 0,
i.e. B_EPJC_72_2046Fort (0) or the distributed example B_EPJC_72_2046(0), are identical.

27

6 Hints on the software installation

The software version x.y.z is distributed via the corresponding hepforge project page [23] as a
gziped tar file named Blue-x.y.z.tar.gz, where the present version is x.y.z = 2.0.0.

The result of this software is not expected to depend on the installed version of the ROOT
package. It has been used with a number of ROOT versions. In particular, the examples have
been run with ROOT 5.34/04 and ROOT 6.00/02 while obtaining identical results. So far, most
tests have been performed with ROOT 5.34/04.

To install and use it perform the following steps:

To unzip the file: gzip -d Blue-2.0.0.tar.gz

To untar the file: tar -xf Blue-2.0.0.tar

To compile the class: make

Start ROOT

To load the Blue library: gSystem->Load("libBlue.so");

To get access to any of the example functions: e.g. .L B_EPJC_72_2046.cxx++

A e

7. To execute a specific combination of this example: B_EPJC_72_2046(1)

For a more automated usage see the above descriptions of BlueOne and BlueAll. Finally, using
the script Install a version x.y.z can be installed and the examples run by typing Install
Blue-x.y.z.tar.gz.

In addition to the interface described in this manual, the software contains a number of
private: member functions. However, differently from regular C++ code, when the ACLiC
system is used for the examples as suggested above, these member functions are not prohibited
from being used outside of the class. Clearly, using those functions is strongly discouraged and
can lead to unexpected results.

7 Conclusions

In this manual, a software package to perform the combination of several estimates of a number
of observables was presented. The software is freely available from the corresponding hepforge
project page. Given it is based on ROOT, it is distributed under the GNU Lesser General
Public License. When using this software in publications, please give reference to the Software
homepage [23] and to Ref. [5]. Should you spot any mistake or peculiarity, please inform the
author. If you want to be informed about new versions of the software by e-mail, let me know,
either via the hepforge page or by direct e-mail.

Acknowledgements

I like to thank Sven Menke and Giorgio Cortiana for useful discussions on the project and their
assistance. I am grateful to Sven for his valuable help on implementation issues, and to Giorgio
for intensively using the code and providing feedback.

28

1 = =
< s S’ g //
._._7 — YE 7
S —— T E // ~ \
0 \\ E p
- - - \
: z \l
-0.5 o \
- 3 (-)
. p-= l-pz _X:X =
an 12024722 X Xy - 2pz+2
- x=(1P)x + Bx,) X, t BX,
i o
L Z=g =1.0 15 3.0 g, =1.0 1.8 3.0
157 08 06 04 02 0 02 04 06 08 1 %1 08 06 04 02 0 02 04 06 08 1
p p
(a) 8 as a function of p (b) 0,/01 as a function of p
lQa G_“ = t)>< a. F
QI B %--—_._"Q p |(° 1.4 / T
C g of -p).(1-pz)
0.5 o 12 B PN (- 20z + 297
- 1 X +Bx
L C 1 2
aF \ sk =1.0 1.5.2.0.3.0
E \ \ 0.6
15 -
C 0.4 .
B z(1-7) \ c .
S0P (1-20z+ 272 0.2f \\\
2t-0P- - (1-2p B N AN
SN oF \\ \
T x=(A-P)x +BX - \
250 ' ? 0.2F \\
C 2= £=10 152030 g
-]]
_31”Hllu.um”.,u,.‘,u‘HH, 0'4*”””””””‘HHHHHH‘
‘1 08 -06 -04 -02 0 02 04 06 08 1 -1 -08 -06 -04 02 0 02 04 06 08 1
p P
(¢) 98/0p as a function of p (d) 1/01 do,/dp as a function of p

Figure 1: The results for Egs. as functions of p for a number of z values. Shown are (a)
and (b) o, /0y and their derivatives with respect to p, (¢) 98/0p and (d) 1/oy 0o, /0p

29

1 —
“ o5 ele’ ?<
\ T \
H\ S] 08} ™
L ~ K AN
0 — [\\
L — L \\
B 0.6 R
05 \ T i
L _/// 0.4*
i 2(1 -
L 8= 1-pz _ X-X; :%:Vlz(zl 52)2
i 1202122 XX L pzrz
i x = (1B) x,+ Bx, M xEapx B,
L g - 0'2
- 2 - =i = -
o 2T PO P N el Y s
A5T12 14 16 18 2 22 24 26 28 3 1 12 14 16 18 2 22 24 26 28 3
z 4
(a) B as a function of z (b) 0,/01 as a function of z
| NOSE
Qs L
o E——
e
-0.5[g
-1;/ //—_’-—
1.5: / QE_ F(l T ZZ) 157
L - DV
2F Oz (1-2p2+7) o6t L0 = (1.~ 07) \/ 1-¢
- -0. (kom-P2)
E x= (1B x + Bx, 91 0z V@ -2pz +22)°
2.5F o5 : o X= (01'[3) X, *Bx
- 2=g, P=-10 060509 L 2= p=-10 0.60.509
S17712 14 16 18 2 22 24 26 28 3 12712 16 18 2 22 24 26 28 3
z 4
(¢) 98/0z as a function of z (d) 1/0q 0o, /0z as a function of z

Figure 2: The results for Egs. [6H7] as functions of z for a number of p values. Shown are
(a) 5 and (b) 0, /0y and their derivatives with respect to z, (¢) 98/0z and (d) 1/0y 0o, /0%

30

0 0 __F
2 Q22r
LICJ 50 LICJ 20?
40 -
5 0 0.2 0.4 0.6 0.8 1
X P(x?1)
(a) The x? distribution (b) The P(x?,1) distribution

Figure 3: The results from the compatibility investigation using CompatEst () for the example
B_arXiv_1305_3929.cxx(1). Shown are (a) the x? distribution, and (b) the corresponding
P(x?% 1) distribution for the observable listed in the histogram title.

31

Res: mtop_Group_0_Steps_4/7/10=B/G/R Res: mtop_Group_1_Steps_4/7/10=B/G/R
a F o E
2 015 8 -
£ L £ L
< C < 0.0~
0.1 L
C 0.04—
0.05— C
L 0.02f
C L [|
L L [|
0 T — 0 ——
- - |
-0.05]— 0021
C 0.04
0.1 C
o -0.06|—
-0.15~ F
5 (S I [Iy A | = N N S [I)y A |
g N 0n unununo X w L. = Q g N 0n nunono X w L. = Q
Em&mmmm22030(§§%§’5§3 Qmmwwmmggogoggggggs
L B B B e W 24 L ET 10052 N2233223 o cEsan00=2
e g gL [a) m o a e 2 g 8= [a) m m a
(a) The differences of the values
Unc: mtop_Group_0_Steps_4/7/10=B/G/R | | Unc: mtop_Group_1_Steps_4/7/10=B/G/R
2 o = -
2 o] r
E 0.04F E L
— o — 003
5] C 5 o
< 0.03F < L
E 0.02
0.02F L
F X 1-_
0.01_— 0.0 o
2 of =
F r L]
C L
l u ||
- -0.01_— .
E -0.02-
-0.03F F
E -0.03F
-0.04 E
] N Y S I [Ny A | T T T N O A N O B B N B
g N n unununo o w L. = = o g 0N n nunono X w L. s = [=3
SmﬂmmmmEEQDD(ég%gD%: Emﬂwmmw§go:og§%§o§3
nosmoo3a eagz%5022 oo~ C ceEian00=s2
2eg2e2=e [a) mo~a egel=e o mo < T

Figure 4: The results from the correlation scan of SolveScaRho () using PrintScaRho (FilNam),
taken from the example B_LATLAS_CONF_2013_102(9). Shown are (a) the observed shifts (actual
- default) in the value, and (b) the corresponding shifts in the uncertainty of the combined result
for the observable under study and separated into the groups defined in the constructor. The
histogram title reports the name of the observable and the group of estimates considered. The
histograms show the results at step four (Blue), seven (Green) and ten (Red) of the variation,

(b) The differences of the uncertainties

where the scanned range of the correlation can be defined in the call to SolveScaRho ().

32

‘sonpeA z pue d oY) jo sired siqrssod auru [[e SuIsn
paurejqo st aguel sty [, ‘(o) pue (v) ur pejonb st a8uel [nj Iy} Lo/“o pue g 10] ‘A[eur ‘69T 0} 6¢' T WO 2 SUISURYD Uaym
poaalesqo pajonb st gy = d e d 0/g @ utl 93uer oty (q) ul ojdurexs ue sy ‘Iojowrered I9T0 o) JO oN[eA dAI}edsal oY) Sutdesy
O[IUM ‘UMOYS SOAIND DI} 9} I0J POUIRI(O ST dFURI SIY T, "USALS ST SoN[eA JIojotrered PoAIosqO JO oURI o) 2INSY-(ns [ors I0J ‘Z
pue d 03 j00dsor y3m Lo /%o pue ¢ Jo SOATJRALIOp oY) 10, ‘A[oA11oadsal (p) pue (() Ul USAIS oIe d puR 2 I0J Posn SoN[RA 99IY] 1)
pu® ‘par/soe[q/en[q Ul UMOYS 8I8 UOIJRLIRA ST} JO ON[LA WINWIXRUW /[RIJUSD /WNWIUIW 97} 0} SUTPUOdSIIIOD SOAIND O], "PILIRA ST
(d 10) 2 Jo anpea o) ‘(2 10) d Jo UONDOUNJ B Se UMOYS SIojourered I0J ‘YOTYM U WMOYS dIR SIAIND J0I() 9IMSY-Ns (oo U] "PIISI|
oIR ‘SOIIUIRIISOUN I8} [IIM IST[}950) ‘T on[eA PoUIqUIOD oY) S [[om sk ‘Cr pue LT sojeun}se oY) osfe (®) U] 'z pue d Jo sanfea
[enjoe o) syuesardar jutod spelq oY) "o'T ‘pajedryseaut osed [erads o) 10§ [gHI] semSr] 01 puodser10o semSy-qns oy, :G 2SI

() (3) () ()
z z d d
I 8T 9T LA T T Z 8T 9T LA T T T 80 90 ¥0 20 0 Z20-t¥0-90-80 T- T 80 90 %0 20 0 20 ¥0 90-80 T-
e L 1 LA A I e e O
. T . 4 1 . Q 00'0 A= -
680> 20/"00'0T > ¥ED] dro £20>0eroeon >2ez0 00T>"0/'0 > 160 Jro
80] Jdzo- f
1 Jzo 1 1z'0
o0 E -0 3
1 €0 9 Jeo
]] Heo]
e Jvo] Jvo
] | -0 |
4 450 1 ds0
—zo] —90]
1 90 E 90
Jo] 80]
g 420 § 20
1B] Jr .DH]
Jz0 2 480 1 = Js0
] [=3)] 42T 1
\v.o XD \Hm.o XD 1 XD m 60 XD
~ & -~ 1 B =~
0 ol) 17T & E
S —® 9) i .9
(p) () (@) (®)
z z d d
4 8'T 9T A T T 4 8T 9T A T T. T 80 90 ¥0 20 0 20-¥0 9080 T- T 80 90 %020 0 2¢0-¥0 90 80 T,
T T € T A RRAANRRRARARRRR A SRR nn sy R nenatoR P e e § T
] ‘ o ten e — () ot pee)T = 2y 1
€80 '€L°0 ‘€90 =d (2)} Jez il ST'T ‘60T ‘T0T |N.€r‘m.~. 08°C -+ ¥S'GLT =X |
))]]] 89°'Z -+ T0'GLT ="X]
0€'T- > 2/de > ¥8'2-] bl L0°0- > de/de > €6°0- | T
1o ‘ p Y§'C -+ E€TSLT=X]|
[] 1= ‘
mm.H i] i
. g0 et 6v°0>9 >010|5"
- i i i
s —o] o
ER |]]
] m S0 i §0
go N = i)

33

| Like = 1.531 (-0.270 +0.409) (+-0.340)
| BLUE = 1.250 (-0.265 +0.265)

pdf(Esti, Obso)
o
T

0.08—

0.06—

0.04—

0.02—

|
2.5
Obs0

Figure 6: The results from InspectLike() taken from the example B_Peelles(0). Shown are
the results from the likelihood fit (red) in comparison to the result from the BLUE combination
(blue) with relative uncertainties for scenario A of Table 1 of Ref. [5].

34

A

Release notes

The latest changes made to the software, restricted to the last three major releases, are listed in
reverse order. Only the main points are given, for details please refer to the description of the
interface in the main part of the text.

Changes from 1.9.0 to 2.0.0

1.

10.

11.
12.

13.
14.

15.

16.
17.

Add some getters for the active estimates GetActEst (Int_tn), GetEst (), GetEstVal(),
GetEstUnc().

. Add some getters for the list of estimates selected by the SolveAccImp() solver, namely

GetAccImpLasEst() and GetAccImpIndEst ().

Add DisplayAccImp() to visualise the successive results of SolveAccImp().

Add the display of compatibility measures x? and P(x?,1) to PrintCompatEst (FilNam).
Expand DrawSens () to also display individual sub-figures, adapt InspectPair () accord-
ingly.

Add PrintScaRho (FilNam) to visualise the results of SolveScaRho().

Change naming conventions for the pdf files provided by InspectPair() to contain the
string InsPai and the indices of the estimates, and for those provided by DisplayResult ()
to contain the string DisRes.

Add new examples B_EPJC_74_3004.cxx, B_arXiv_1403_4427, B_arXiv_1407_2682, B_-
ATLAS_CONF_2014_012 and B_PRD88_052018. cxx.

Add some convenient printing routines for matrices PrintMatrix (), and arrays of doubles
PrintDouble().

Add SetQuiet () to give the possibility to switch of print out in FixInp() and Solve()
that cannot be switched off by SetPrintLevel(). This is useful for iterative solving.
Reverting to the original behaviour is achieved using SetNotQuiet ().

Improve the memory management, for a more efficient running in case of the creation of
many BLUE objects within one ROOT session.

Add LtexOne and LtexAll to automate ITEX file processing from the shell.

Expand and adapt several examples.

The definition of relative uncertainties needed for SolveRelUnc(...) has been adapted.
In the rare case that an estimate has a different sign than the combined result, the presently
implemented default algorithm would lead to a negative variance for the statistical uncer-
tainty and the combination would fail. To avoid this, the functional form for the definition
of relative uncertainties has been changed and now uses |z|, see SetRelUnc (k). In addi-
tion, also for user defined coefficients ActCof, the software is now protected against the
occurrence of negative variances.

Add the possibility to also perform a simplified likelihood fit InspectLike (), and to print
PrintInspectLike () as well as retrieve GetInspectLike () the results.

Remove the restriction on the number of allowed observables.

Correct a re-occurring bug that could occur whenever an observable was disabled. This bug
relates to DisplayResult () and GetResult(), where the measured values are swapped,
GetUncert (), where the uncertainties are swapped, and finally also to GetScaVal() and
GetScaUnc (), where the matrices are swapped. All results with consecutive observables

35

18.

19.

of which none was disabled were not affected.

Correct a bug in the print out of PrintEst (i), where the error messages for not fized
imput and not allowed estimate where exchanged.

Correct a bug in the SetRelUnc (), that was present whenever there were inactive uncer-
tainties declared by SetInActiveUnc().

Changes from 1.8.0 to 1.9.0

1.

2.

Fix a bug in the calculation of 1/01do,/dp in GetPara(ifl = 4). For the first factor of
the equation, 2% was used instead of z, see Eq. . Given this change, the display of the
derivatives in DrawSens () has been changed, see Figure[§] In addition, this figure has been
expanded by also showing the functional dependence of 8 and o, /oy on z for various values
of p, and by displaying the ranges of several parameters. Some other print out within the
sub-figures has been removed.

This bug did not affect any combination, but all print out related to GetPara(ifl = 4).
Change a few examples.

Changes from 1.7.0 to 1.8.0

1.

9.
10.

Complete change of the handling of scaled uncertainties. Remove a bug in
SetRhoFacUnc(...) that occurred in case of InActive uncertainties.

. Add SolveScaRho() to perform automated scans of different correlation assumptions for

groups of estimates (defined in the constructor), and the corresponding PrintScaRho () to
report the findings.

To serve this, add new functionality to the constructor, and to SetRhoFacUnc(...) and
SetRhoValUnc(...).

. Add functions to Get the Num-ber of Sca-le Fac-tor groups GetNumScaFac(), and the

Num-ber of Sca-le factor Rho values GetNumScaRho ().

. Add getters, GetScaVal(...) and GetScaUnc(...) to return the differences in Val-ues

and Unc-ertainties obtained with SolveScaRho () to the user.

. Expand the information listed by PrintAccImp(). Remove a bug in PrintAccImp() that

occurred for the improvement reported by adding the first estimate in case of InActive
estimates.

Add InspectResult() to allow a closer look at the input in case of instable matrix inver-
sions.

Fix a bug in the quoted pull values in LatexResult(...) that could occur in case of
InActive estimates.

Move some print statements from Solve() to PrintStatus().

Change a few examples.

Changes from 1.6.0 to 1.7.0

1.
2.
3.

Adapt Makefile for 32bit ROOT installations on 64bit machines.
Add one option to SolveMaxVar ().

Add various options to SolveAccImp(), keep the old function to run the new default
option.

36

4. Add a function to Get the most Pre-cise Est-imate of a given observable GetPreEst ().
5. Change some print out in DrawSens ().
6. Changes some print statements is PrintStatus() and PrintAccImp().
7. Fix a typo in Peeles, rename B_Peeles to B_Peelles.
8. Change a few examples.
References
[1] L. Lyons and D. Gibaut and P. Clifford, How to combine correlated estimates of a single

[10]

[11]

[12]

physical quantity, Nucl. Instr. and Meth. A270 (1988) 110.

A. Valassi, Combining correlated measurements of several different quantities, Nucl. Instr.
and Meth. A500 (2003) 391.

M. Grunewald, private communication, unpublished software.

R. Brun and F. Rademakers, ROOT - An Object Oriented Data Analysis Framework, Nucl.
Instr. and Meth. A389 (1997) 81-86, Proceedings of AIHENP’96 Workshop, Lausanne,
Sep. 1996.

R. Nisius, On the combination of correlated estimates of a physics observable, Eur. Phys.

J. C74 (2014) 3004.

L. Lyons and A.J. Martin and D.H. Saxon, On the determination of the B lifetime by
combining the results of different experiments, Phys. Rev. D41 (1990) 982.

A. Valassi and R. Chierici, Information and treatment of unknown correlations in the com-
binination of measurements using the BLUE method (v3). arXiv:1307.4003.

The ATLAS Collaboration, G. Aad, et al., Measurement of the top quark mass with the
template method in the top antitop — lepton + jets channel using ATLAS data, Eur. Phys.
J. C72 (2012) 2046.

R.J. Barlow, Statistics: a guide to the use of statistical methods in physical sciences, John
Wiley & Sons Ltd., 1989, ISBN 0 471 92295 1.

R.W. Peelle, Peelle’s pertinent puzzle, Internal Memorandum, Oak Ridge National Labo-
ratory, Washington DC, USA, unpublished.

S. Chiba and D.L. Smith, A suggested procedure for resolving an anomaly in least-squares
data analysis known as 'Peelle’s Pertinent Puzzle’ and the general implications for nuclear
data evaluation, ANL/NDM-121.

URL http://www.osti.gov/scitech/biblio/10121367

The Tevatron Electroweak Working Group for the CDF and D@ Collaborations, Combina-
tion of CDF and D® results on the mass of the top quark using up to 5.8 fb~! of data (v3).
arXiv:1107.5255.

37

http://arxiv.org/abs/1307.4003
http://www.osti.gov/scitech/biblio/10121367
http://www.osti.gov/scitech/biblio/10121367
http://www.osti.gov/scitech/biblio/10121367
http://www.osti.gov/scitech/biblio/10121367
http://arxiv.org/abs/1107.5255

[13]

[14]

[15]

[16]

18]

[19]

[20]

[21]

[22]

[23]

The Tevatron Electroweak Working Group for the CDF and D@ Collaborations, Combi-
nation of CDF and DO results on the mass of the top quark using up to 8.7 fb~! at the
Tevatron (v2). arXiv:1305.3929.

The ATLAS, CDF, CMS and D@ Collaborations, First combination of Tevatron and LHC
measurements of the top-quark mass, ATLAS-CONF-2014-008, CDF Note 11071, CMS-
PAS-TOP-13-005, DO Note 6461. arXiv:1403.4427.

The Tevatron Electroweak Working Group for the CDF and D@ Collaborations, Combi-
nation of CDF and D@ results on the mass of the top quark using up to 9.7 fb~! at the
Tevatron (v1). arXiv:1407_2682.

The ATLAS and CMS Collaborations, Combination of ATLAS and CMS results on the
mass of the top quark using up to 4.9 fb—! of data, ATLAS-CONF-2012-095, CMS-PAS-
TOP-12-001.

URL http://cdsweb.cern.ch/record/1460441

The ATLAS and CMS Collaborations, Combination of ATLAS and CMS top-quark pair
cross-section measurements using proton-proton collisions at /s = 7 TeV, ATLAS-CONF-
2012-134, CMS-PAS-TOP-12-003.

URL http://cdsweb.cern.ch/record/1478422

The ATLAS and CMS Collaborations, Combination of the ATLAS and CMS measurements
of the W-boson polarization in top-quark decays, ATLAS-CONF-2013-033, CMS PAS TOP-
12-025.

URL http://cdsweb.cern.ch/record/1527531

The ATLAS and CMS Collaborations, Combination of single top-quark cross-section mea-
surements in the t-channel at /s = 8 TeV with the ATLAS and CMS experiments, ATLAS-
CONF-2013-098, CMS-PAS-TOP-12-002.

URL http://cdsweb.cern.ch/record/1601029

The ATLAS and CMS Collaborations, Combination of ATLAS and CMS results on the
mass of the top-quark mass using up to 4.9 fb~! of \/s = 7 TeV LHC data, ATLAS-CONF-
2013-102, CMS-PAS-TOP-13-005.

URL http://cdsweb.cern.ch/record/1601811

The ATLAS and CMS Collaborations, Combination of ATLAS and CMS ¢t charge asym-
metry measurements using LHC proton-proton collisions at /s = 7 TeV, ATLAS-CONF-
2014-012, CMS-PAS-TOP-14-006.

URL http://cdsweb.cern.ch/record/1670535

The DO and CDF Collaborations, T. Aaltonen, et al., Combination of CDF and D® W-
Boson mass measurements, Phys. Rev. D88 (2013) 052018.

R. Nisius, BLUE: a ROOT class to combine a number of correlated estimates of one or
more observables using the Best Linear Unbiased Estimate method.
URL http://blue.hepforge.org

38

http://arxiv.org/abs/1305.3929
http://arxiv.org/abs/1403.4427
http://arxiv.org/abs/1407_2682
http://cdsweb.cern.ch/record/1460441
http://cdsweb.cern.ch/record/1460441
http://cdsweb.cern.ch/record/1460441
http://cdsweb.cern.ch/record/1478422
http://cdsweb.cern.ch/record/1478422
http://cdsweb.cern.ch/record/1478422
http://cdsweb.cern.ch/record/1527531
http://cdsweb.cern.ch/record/1527531
http://cdsweb.cern.ch/record/1527531
http://cdsweb.cern.ch/record/1601029
http://cdsweb.cern.ch/record/1601029
http://cdsweb.cern.ch/record/1601029
http://cdsweb.cern.ch/record/1601811
http://cdsweb.cern.ch/record/1601811
http://cdsweb.cern.ch/record/1601811
http://cdsweb.cern.ch/record/1670535
http://cdsweb.cern.ch/record/1670535
http://cdsweb.cern.ch/record/1670535
http://blue.hepforge.org
http://blue.hepforge.org
http://blue.hepforge.org

	Introduction
	Software structure
	Details of the interface
	Constructor
	Fill input
	Fix and free input
	Solver
	Setters
	Getters
	Getters for active estimates, uncertainties and observables
	Getters for the consistency of the combination
	Getters for the results of the combination
	Getters for specific solving methods

	Print out
	Print functions for matrices and arrays
	Print functions for active estimates
	Print functions for active observables
	Print functions for the overall status
	Print functions for specific solving methods

	Utilities
	Data structure independent utilities for a pair of estimates
	Data structure dependent utility for a pair of estimates
	Utility to compare to the maximum likelihood approach
	Utility to inspect instable matrix inversions
	Utilities for publishing

	Examples
	Conversion of input files
	Hints on the software installation
	Conclusions
	Release notes

