
BLUE
A software package to combine

correlated estimates within ROOT
Program manual
Version 1.9.0

Richard Nisius

January 28, 2014

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)
Föhringer Ring 6, D-80805 München, Germany,

http://www.mpp.mpg.de/̃ nisius,
Richard.Nisius@mpp.mpg.de

Abstract

The combination of correlated estimates of a number of observables is a common task
in particle physics. This is frequently performed using the BLUE (Best Linear Unbiased
Estimate) method.

Given the widespread usage of the ROOT analysis package, a flexible ROOT imple-
mentation of the BLUE mathematical framework has been written, and is described in
this manual. The software is freely available from the corresponding hepforge project page.
Given it is based on ROOT, it is distributed under the GNU Lesser Public License.

1 Introduction

The combination of a number of estimates for a single observable is discussed in Ref. [1]. Here,
the term estimate denotes a particular outcome (measurement) of an experiment based on an
experimental estimator of the observable, which follows a probability density distribution (pdf).
The particular estimate obtained by the experiment may be a likely or unlikely outcome given
that distribution. Repeating the measurement numerous times the estimates will follow the
underlying pdf of the estimator. The analysis makes use of a χ2 minimisation to obtain the
combined values. In Ref. [1], this minimisation is expressed in the mathematically equivalent
BLUE language.

1

Provided the estimators are unbiased, when applying this formalism the Best Linear Unbi-
ased Estimate of the observable is obtained with the following meaning. Best: The combined
result for the observable obtained this way has the smallest variance; Linear: The result is a
linear combination of the individual estimates; Unbiased Estimate: When the procedure is
repeated for a large number of cases consistent with the underlying multidimensional pdf, the
mean of all combined results equals the true value of the observable. The extension to more
than one observable is described in [2].

For many years, a freely available Fortran based software [3] to perform the combination for
a number of estimates and for several observables was widely used. The implementation of the
BLUE method described here is targeted at being used within the ROOT analysis framework [4].

The equations to solve the problem for the general case of m estimates of n observables with
m ≥ n can be found in [2]. They are implemented in the software presented, but are not repeated
here. However, the simple case of two correlated estimates of the same observable is discussed
in some detail. This is because already for this case the main features of the combination can
easily be understood.

Let x1 and x2 with variances σ2
1 and σ2

2 be two estimates from two unbiased estimators of
the true value xT of the observable, and ρ the total correlation of the two estimators. Let the
estimator resulting in x1 be as least as precise as the estimator of xT than the estimator yielding
x2, such that z ≡ σ2/σ1 ≥ 1. Then the BLUE of xT is:

x = (1− β)x1 + β x2 ,

where β is the weight of the less precise estimate. The variable x is the combined result and σ2
x is

its variance. To investigate the improvement on the precision of x when adding the information
of x2 to the more precise estimate from x1, i.e. to decide whether it is worth combining, the
variable σx/σ1 is investigated. This variable quantifies the uncertainty of the combined value in
units of the uncertainty of the more precise estimate, i.e. 1− σx/σ1 is the relative improvement
achieved by also using x2 from the less precise estimator.

The two quantities and their derivatives with respect to the parameters ρ and z are given in
Eqs. 1–6. They are valid for −1 ≤ ρ ≤ 1 and z ≥ 1, but for ρ = z = 1. The resulting variations
of the combined value are given in Eqs. 7–8.

β =
x− x1
x2 − x1

=
1− ρz

1− 2ρz + z2
=

1− ρz
(1− ρz)2 + z2(1− ρ2)

(1)

σx
σ1

=

√
z2(1− ρ2)

1− 2ρz + z2
(2)

d β

d ρ
=

z(1− z2)
(1− 2ρz + z2)2

(3)

d σx
σ1

d ρ
= z(z − ρ)(1− ρz)

√
1

(1− ρ2)(1− 2ρz + z2)3
(4)

d β

d z
=

ρ(1 + z2)− 2z

(1− 2ρz + z2)2
(5)

d σx
σ1

d z
= (1− ρz)

√√√√ 1− ρ2
(1− 2ρz + z2)3

(6)

2

d x

d ρ
= (x2 − x1)

d β

d ρ
(7)

d x

d z
= (x2 − x1)

d β

d z
(8)

The resulting β and σx/σ1, as functions of ρ, and for various z values (Eq. 1 and Eq. 2) are
shown in Figures 1(a) and 1(b). A few features of the variables β and σx/σ1 are discussed below
that are important to understand the results of the combination.

The value of β is smaller or equal to 0.5, because otherwise x2 would be the more precise
estimate. Since the denominator in Eq. 1 is positive for all allowed values of ρ and z, the function
for β turns negative for ρ > 1/z as shown in Figure 1(a). As can be seen from the second term
in Eq. 1, the value of β can be interpreted as the difference of the combined value from the more
precise estimate in units of the difference of the two estimates. When β is negative, the signs
of the numerator and denominator are different. This means the value of x lies on the opposite
side of x1 than x2 does, or in other words, the combined value lies outside the range spanned by
the two estimates.

Since the denominator in Eq. 1 and Eq. 2 are identical, and the denominator of Eq. 1 equals
the numerator of Eq. 2 plus an additional term that is positive for all values of ρ and z, the value
of σx/σ1 is always smaller than 1 as shown in Figure 1(b). Again this is expected, since including
the information from the estimate x2 should improve on the knowledge of x, which means on its
precision σx. Not surprisingly, the value of σx/σ1 is exactly one for ρ = 1/z, i.e. when β = 0. In
this situation, the information from x2 is ignored in the linear combination, and consequently
x = x1 and σx = σ1.

The derivatives of β and σx/σ1 with respect to ρ as functions of ρ, and for various z values
(Eq. 3 and Eq. 4) are shown in Figures 1(c) and 1(d). The equations for β and σx/σ1, this
time as a function of z and for various ρ values, are shown in Figures 2(a) and 2(b). Finally,
the derivatives of β and σx/σ1 with respect to z as functions of z, and for various ρ values
(Eq. 5 and Eq. 6) are shown in Figures 2(c) and 2(d). These derivatives can be used to evaluate
the sensitivity of the combined result to the imperfect knowledge on both the correlation ρ
and the uncertainty ratio z of the individual estimators. With this information the stability of
the combined result can be assessed and a decision can be taken on whether to refrain from
combining. This decision should only be based on the features of the parameters σx/σ1 and
β but not on the outcome for a particular pair of estimates x1 and x2. This is because these
parameters and their derivatives are features of the underlying probability distributions of the
estimators, whereas the two specific values are just a pair of estimates, i.e. a single possible
outcome of results.

This manual is organised as follows: The software structure is outlined in Section 2, followed
by the description of the user interface given in Section 3. A number of examples provided are
discussed in Section 4. The conversion of input files for the Fortran software [3] to functions to be
used with this ROOT implementation is explained in Section 5. Some hints on the installation
and usage of the software are given in Section 6. Conclusions are drawn in Section 7 followed
by an appendix. In Appendix A, the relations for β and σx, Eq. 1 and Eq. 2, are derived in
the BLUE formalism. Finally, the changes made to the software are documented in the release
notes given in Appendix B.

3

2 Software structure

This section explains the general strategy for the usage of the package. The details of the
functions mentioned here are given in Section 3. The functionality is implemented in a ROOT
class called Blue that derives from TObject. No attempt has been made to override the default
implementations provided by this, but for what is described below.

The usage of the software is separated in up to three steps.

1. During the first step the constructor is called and the individual estimates and their uncer-
tainties, as well as all correlation matrices of the uncertainty sources are filled. Optionally,
also names for estimates, uncertainty sources and observables can be filled. When this
has been completed, the input stream is closed automatically and the filling functions are
disabled.

2. In the second (optional) step individual estimates and/or uncertainty sources can be dis-
abled, or correlation assumptions can be altered for the combination to follow by calling
the corresponding Set...() functions. If this step is used, before a further combination
can be performed, the input to the combination has to be fixed by the user by calling
FixInp() indicating the end of the selection. After this call a number of Print functions
are available for digesting the input and the selections made.

3. In the third step the actual combination is performed by calling (FixInp() if step 2 is
omitted and) one of the Solve...() functions. A number of Print functions are provided
for digesting the result for the observables.

The second and third steps can be performed as often as wanted. In this case, after any com-
bination, first the input has to be freed for further selections by calling either ReleaseInp() or
ResetInp(). The difference of these two options is discussed below.

3 Details of the interface

This section describes the details of the interface. All arguments passed to member functions
are declared as const, but for those that are return values as described below. However, this
fact is not mentioned in the description of the function prototypes below. This means arguments
denoted as Int t in fact are const Int t . In contrast, functions that are const, i.e. those that
do not alter the state of the object are marked as such.

3.1 Constructor

Blue(Int t NumEst, Int t NumUnc, Int t NumObs, Int t* IWhichObs, Int t* IWhichFac):
Blue(Int t NumEst, Int t NumUnc, Int t NumObs, Int t* IWhichObs):
Blue(Int t NumEst, Int t NumUnc, Int t* IWhichFac):
Blue(Int t NumEst, Int t NumUnc): The first constructor instantiates the object for a num-
ber of estimates (NumEst), uncertainty sources (NumUnc) and observables (NumObs). The array
IWhichObs indicates which observable a given estimate is determining. The array IWhichFac

defines different groups to be considered in systematic variations of the correlation assumptions,
when using SolveScaRho(), see below. The input for the example of four estimates, ten uncer-
tainty sources for two observables, where the first two estimates determine the first observable,

4

and the second two estimates determine the second observable is: NumEst = 4, NumUnc = 10,
NumObs = 2, and IWhichObs = {0,0,1,1}. If these fall into two groups of estimates, e.g. (0, 2)
and (1, 3), which e.g. could stem from two experiments, and for which the correlation assumption
should be scanned differently for the pairs of estimates from the same experiment (02) and (13),
or from different experiments (01), (03), (21) and (23), the following info should be provided:

WhichFac =

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

 , (9)

where the array IWhichFac should contain this matrix in row wise storage. The values on the
diagonal are not relevant, the off-diagonal elements should start from zero and run up to l =

NumFac-1, where NumFac is the number of groups desired.
In the case of a single observable, i.e. if NumObs = 1, the information in IWhichObs is redun-

dant and ignored. In this case the more simple constructors can be used instead. If also possible
scans in SolveScaRho() should be performed simultaneously for all pairs of estimates, the last
constructor is sufficient.

3.2 Filling functions

void FillEst(Int t i, Double t* x): The estimate i with the index in the following range:
i = 0, ..., NumEst-1 is filled. The array x must contain NumUnc + 1 entries, namely the value
of the estimate and the individual uncertainties in the following form: x = Value, σ0, σ1, . . . , σkmax

with kmax = NumUnc - 1. The software assumes that σ0 is the statistical uncertainty and σk
with k > 0 are systematic uncertainties.

If for a source k a negative entry σk < 0 is supplied, this value is considered a percentage
uncertainty. During filling this is converted from σk → −σk · Value / 100.

void FillCor(Int t k, Double t* x): The correlation matrix of the uncertainty k with indices
in the range k = 0, . . . , NumUnc-1 is filled. For the example of NumEst = 3 the correlation matrix
for any uncertainty source k is:

V =

 V00 V01 V02
V10 V11 V12
V20 V21 V22

 . (10)

The array x must contain the row wise storage of this matrix, i.e. for the above example it
should read x = V00, V01, V02, V10, V11, V12, V20, V21, V22. The user should ensure the matrix to be
a valid correlation matrix, i.e. the elements to be within bounds, the matrix to be symmetric,
and that the diagonal elements are unity, i.e. the following conditions should be fulfilled: Vii = 1
and −1 ≤ Vji = Vij ≤ 1 for i 6= j, for all i, j = 0, . . . NumEst - 1. If the matrix is not symmetric,
or off diagonal elements are outside their range of validity, the input is not consistent. In this
case, an error message is issued and the software will refrain from combining. In any case, the
diagonal elements will be forced to unity by the software.

Given the above relations, the entire information is contained in one half of the off diagonal
elements (e.g. those marked in red in Eq. 10). To account for this, this function can also be called

5

with k replaced by −k (for k 6= 0). In this case the array x should only contain the significant
elements again in row-wise storage, i.e. in the above case x = V01, V02, V12 is expected by the
software. Again, if elements are outside their range of validity, the input is not consistent, an
error message is issued and the software will refrain from combining.

void FillCor(Int t k, Double t rho): Frequently uncertainty sources are either uncorrelated
or fully correlated amongst all estimates. In this case, only a single value, namely the overall
correlation obeying −1 ≤ rho = ρk ≤ 1 is significant. A call to this function will store a cor-
relation matrix with Vii = 1 and Vji = Vij = ρk for i 6= j, for i, j = 0, . . . , NumEst - 1 for the
source k. If the value of ρk is not within bounds, the input is not consistent, an error message
is issued and the software will refrain from combining.

The following functions allow to assign names to estimates, uncertainties and observables.
They are implemented as TString objects. The length of each name is arbitrary, however all
printing functions and the display routine are optimised for names with equal length of seven
characters. The type of characters can be freely chosen, however those requiring math mode
should be avoided when using LatexResult() (see below). For all functions it is the respon-
sibility of the user to ensure the correct length of the arrays of names, i.e. names for NumEst

estimates, NumUnc uncertainties and NumObs observables should be provided. The functions can
only be called before the end of input of estimates and correlations is recognised by the software.
Therefore, it is recommended to first fill the names if wanted.

void FillNamEst(TString* NamEst): A call to this function will store the names of the esti-
mates.

void FillNamUnc(TString* NamUnc): A call to this function will store the names of the uncer-
tainties.

void FillNamObs(TString* NamObs): A call to this function will store the names of the ob-
servables.

3.3 Fix and free input

void FixInp(): The input is fixed for solving and the calculation of several matrices is initiated.

void ReleaseInp(): The input is freed for additional selections. Any further selection starts
from the situation at the last call to TvarFixInp().

void ResetInp(): The input is freed for additional selections. However, in this case any further
selection starts from the original user input.

3.4 Solver

The default method for solving the problem is:

6

void Solve(): The BLUE combination for the presently active estimates and uncertainties is
performed.

In the following a number of specific Solve...() functions are discussed which themselves
call FixInp() and Solve() several times. As a consequence, after calling one of these functions
the output of the print functions related to estimates and uncertainties will be different from the
one after the last user call to FixInp(). In contrast, since these functions use ReleaseInp(),
the situation in terms of active estimates, uncertainties and correlation assumptions remains
unchanged. Exceptions are: SolvePosWei(), where estimates resulting in negative weights are
disabled at return, and SolveMaxVar(), where the uncertainties are scaled, see SetRhoFacUnc()
for details. For the user to get to a clean situation after using theses exceptions it is recom-
mended to use ResetInp() before subsequent calls to Solve().

void SolveRelUnc(Double t Dx): The BLUE combination is performed for the presently active
estimates and uncertainties, of which at least one has to be a Rel-ative Unc-ertainty. Iterations
are made until the relative difference of the combined value with respect to the one from the
previous iteration falls below Dx percent.

The uncertainty sources can be an arbitrary mixture of relative or absolute uncertainties, see
SetRelUnc(...) for how to steer this. The term absolute uncertainty means that the value of
the uncertainty is identical for all possible values of the estimator pdf, i.e. it is independent of
the actual value of the estimate. This means it is the same for the actual estimate, any combined
value and the true value. Therefore, irrespectively whether it was calculated for the estimate
it also applies to the combined value. In contrast, a relative uncertainty (e.g. of some percent)
varies across the pdf and depends on the actual value of the estimate. Consequently, in this case
after each iteration the uncertainty is replaced by the expected uncertainty of the true value xT,
approximated by the one of the combined value x.

The procedure works as follows: First a BLUE combination is performed. Then the uncer-
tainties are adjusted based on the result and the next iteration is performed. This is repeated
until convergence is reached. For each estimate i and each relative uncertainty k the dependence
of the contribution from this source to the covariance matrix can be defined by the user as a
second order polynomial in x. The function reads σ2

ik = a0 + a1 x+ a2 x
2. See SetRelUnc(...)

for the details of the implementation and Ref. [5] for an example of a more complicate situation.

void SolveAccImp(Int t ImpFla, Double t Dx) const:
void SolveAccImp(Double t Dx) const: For each observable a combination of the estimates
is performed Acc-ording to their Imp-ortance. For the first implementation, three definitions of
importance of the estimates j are implemented given the most precise estimate is i. The second
uses ImpFla = 0.
The options implemented are:
1) ImpFla = 0 means sorted by Eq. 2 using 12 = ij
2) ImpFla = 1 means sorted by the absolute BLUE weights |αj|
3) ImpFla = 2 means sorted by inverse variance 1/σ2

j .

The software suggests which estimates to combine until the uncertainty of the combined
value is never improved by more than Dx percent by adding further estimates. First a BLUE

7

combination for the presently active estimates and uncertainties is performed. For each active
observable the related estimates are sorted by importance. According to this list one estimate at
a time is added to the most precise one and the combination is performed, while all less impor-
tant estimates of this observable are disabled. In contrast, all estimates of other observables are
kept active such that the full correlation is preserved. This is repeated for all active observables.
The outcome can be digested by a call to PrintAccImp().

void SolveScaRho(Int t RhoFla, Double t* MinRho, Double t* MaxRho) const:
void SolveScaRho(Int t RhoFla) const:
xs void SolveScaRho() const: This function performs a scan in the correlation assumptions
for all active estimates, uncertainty sources k, and observables, while using NumFac groups of
multiplicative factors r, performing ten steps each in the range defined by MaxRho > r > MinRho,
while decreasing r. Non of the active uncertainties is allowed to be declared as changed or
reduced uncertainty, see below SetRhoXXXUnc() for the definitions. While the groups l are
always scanned independently, the sources k are scanned either independently for RhoFla = 0,
or simultaneously for RhoFla = 1.

Given that the sources of uncertainty k in general are independent, because otherwise adding
them quadratically to calculate the total uncertainty would not be correct, an independent scan,
i.e. RhoFla = 0 is recommended. If this is wanted, and the variation for all sources and groups
(k, l) should be done in the range 1 > r > 0 with respect to the initially provided correlation, the
last implementation should be used. Otherwise the boundaries should be given in the following
form: MinRho(k=0 l=0, k=0 l=1, ..., k=NumUnc-1 l=NumFac-1).

Manipulations with many groups l that may end up in manipulating single entries of the
covariance matrix, can easily lead to instable matrix inversions. The software is protected
against this.

The procedure works as follows. First a combination is performed for the active estimates
and uncertainties treating all uncertainties as scaled uncertainties, while using any given scale
provided by preceding calls to SetRhoFacUnc(), and for r = 1. Then a scan is performed and
the differences of the observables and their uncertainties with respect to the values from the
initial result are stored. Inversion failures are indicated by values of -1.00 for both differences.
Finally, the outcome can be digested by a call to PrintScaRho().

void SolveInfWei() const: This function is only available for a single observable. It yields
the same result as a call to Solve() but also calculates the information weights defined in [6].
The weights calculated are the BLUE weights αi, the intrinsic weights, the marginal weights,
the weight assigned to the correlation and finally the relative weights. These weights are defined
as follows:

BLUE = αi

intrinsic =
σ2
x

σ2
i

correlation = 1− Σiintrinsic

marginal = 1− σ2
x

σ2
xm−i

8

relative =
|αi|

Σi|αi|
Here σ2

xm−i denotes the variance of the combination when using all m estimates, but the estimate
i. The outcome can be digested by a call to PrintInfWei(). NOTE: It is recommended to NOT
use relative weights when achieving scientific results because of the weakness of the concept, see
Ref. [6] for a discussion. Here, they are only implemented to enable comparisons.

The following functions implement two alternative solving methods. NOTE: It is recom-
mended to NOT use these functions when achieving scientific results because of the weakness
of the concepts. Here, they are only implemented to enable comparisons.

void SolvePosWei() const: For each observable a combination is performed by including only
estimates of this observable that have Pos-itive Wei-ghts and all other estimates of different
observables. First a BLUE combination for the presently active estimates and uncertainties
is performed. Then, all estimates that determine this observable, and have negative BLUE
weights, are disabled and the next combination is performed. This is repeated until no estimates
with negative weights remain.

void SolveMaxVar(Int t IFuRho) const: This functions is only available for a single observ-
able. Three methods are implemented to Max-imise the Var-iance of the combined result by
changing, i.e. reducing the correlations of the systematic uncertainties in an artificial, but con-
trolled way, see Ref. [6]. This is achieved by multiplying all covariance entries (i.e. the off
diagonal elements of the contributions to the covariance matrix for the uncertainty source k) for
k > 0 by factors fijk, thereby changing the initially assigned correlations. This procedure is not
applied to the source k = 0, which is assumed to be the statistical uncertainty, which is either
uncorrelated between estimates, or the correlations are exactly known, because they have been
determined by the experiments as e.g. in Ref. [7].

The following options are implemented:
1) IFuRho = 0 means fijk = f for all i, j, k,
2) IFuRho = ± 1 means fijk = fk for all i, j,
3) IFuRho = 2 means fijk = fij for all k.

Since for each source k and pair i, j of estimates the dependence of the relative improvement
in the uncertainty follows Figure 1(b), the factors fijk are obtained by a scan in the value of the
respective factor using the range 1→ 0. The maximum is guaranteed to exist for ρijk = 1/zijk >
0. Clearly, if the correlation initially assigned is such that it lies to the left of this point, the
initial situation already corresponds to the maximum to be calculated, i.e. the real maximum is
not attempted to be found in this procedure.

The algorithm works as follows: For IFuRho = 0, the global factor f is found by a scan
from 1→ 0. For IFuRho = ± 1, the fk are obtained independently IFuRho = 1, (consecutively
IFuRho = -1) for all sources k > 0, i.e. when determining fk the values for sources k′ with k′ 6= k
are set to unity (their already found values). Finally, for IFuRho = 2 the fij are found consec-
utively, while using the already determined values for i′ < i and j′ < j. Given this procedure,
the covariance matrix can be manipulated in such a way that the inversion gets unstable. The

9

software has been protected against this occurrence. Finally, the outcome can be digested by a
call to PrintMaxVar().

3.5 Setters

All setters are implemented in such a way that i and k always refer to their initial values for
estimates and uncertainty sources that were given by the user during the filling step. This way
the user does not need to keep track of the actual index an estimate or uncertainty has within
the presently active list. The setters only work if the input is not fixed.

void SetActiveEst(Int t i): Enable estimate i, i.e. it will be used in subsequent calls to
Solve().

void SetActiveUnc(Int t k): Enable uncertainty k, i.e. it will be used in subsequent calls to
Solve().

void SetInActiveEst(Int t i): Disable estimate i, i.e. it will not be used in subsequent calls
to Solve().

void SetInActiveUnc(Int t k): Disable uncertainty k, i.e. it will not be used in subsequent
calls to Solve().

void SetRhoValUnc(Double t RhoVal):
void SetRhoValUnc(Int t k, Double t RhoVal):
void SetRhoValUnc(Int t k, Int t l, Double t RhoVal): The first implementation of this
function will set the correlations of all active uncertainty sources and all groups l to RhoVal.
This value should be within the range −1 < RhoVal < 1. The second will do the same, but only
for the source k. The third one only applies to the group l of source k. See the constructor for
the definition of the groups l.

void SetNotRhoValUnc():
void SetNotRhoValUnc(Int t k): The first implementation of this function will revert to the
originally provided correlations of all active uncertainty sources. The second will do the same,
but only for the source k.

void SetRhoFacUnc(Double t RhoFac):
void SetRhoFacUnc(Int t k, Double t RhoFac):
void SetRhoFacUnc(Int t k, Int t l, Double t RhoFac): The first implementation of this
function will scale the originally provided correlations of all active uncertainty sources and all
groups l by a factor RhoFac. This factor should be within the range −1 < RhoFac < 1. The
second will do the same, but only for the source k. The third one only applies to the group l
of source k. See the constructor for the definition of the groups l. Clearly, uncorrelated sources
are not affected by this.

10

void SetNotRhoFacUnc():
void SetNotRhoFacUnc(Int t k): The first implementation of this function will revert to the
originally provided correlations of all active uncertainty sources. The second will do the same,
but only for the source k.

The following functions implement the so called reduced correlations1. NOTE: It is recom-
mended to NOT use these functions when achieving scientific results because of the weakness
of the concept. Here, they are only implemented to enable comparisons.

void SetRhoRedUnc():
void SetRhoRedUnc(Int t k): For all active uncertainty sources and all fully correlated pairs
of estimates, the first implementation of this function will replace the correlation by the reduced
correlation. The second will do the same, but only for the source k.

void SetNotRhoRedUnc():
void SetNotRhoRedUnc(Int t k): The first implementation of this function will revert to the
originally provided correlations of all active uncertainty sources. The second will do the same,
but only for the source k.

By construction, changed- scaled- and reduced correlations are mutually exclusive. Conse-
quently, for each source of uncertainty the use of only one of the options is supported by the
software.

The following functions allow to steer which uncertainties are taken as relative and which as
absolute in subsequent calls to SolveRelUnc().

void SetRelUnc():
void SetRelUnc(Int t k): The first implementation of this function will declare all active un-
certainty sources as relative uncertainties. The second will do the same, but only for the source
k. In this implementation the default behaviour of the detailed implementation discussed next
is used for all estimates and the respective uncertainty source.

void SetRelUnc(Int t i, Int t k, Double t* ActCof): For each estimate i and each uncer-
tainty source k the dependence of the variance on the combined value x is defined by using
the coefficients from the array ActCof = {a0, a1, a2} in the second order polynomial: σ2

ik =
a0 + a1 x+ a2 x

2.
In the default implementation it is assumed that the statistical uncertainty (estimate) is

proportional to
√
N (N), where N is the number of events, and the systematic uncertainties to

be linear in x. Consequently, in this case only one coefficient each is different from zero. For
the statistical uncertainty (k = 0) this is a1 = σ2

i0/xi, and for all systematic uncertainties k > 0

1Reduced correlations assume that for each pair (i, j) of estimates and a given source of uncertainty k the
smaller of the individual uncertainties, e.g. σ1k < σ2k, is fully correlated, and the remainder is uncorrelated. This
replaces the covariance ρ12kσ1kσ2k by the square of the smaller of the individual uncertainties σ2

1k for this source,
which is equivalent to assuming the correlation to amount to the ratio of the smaller to the larger uncertainty,
ρ12k = σ1k/σ2k = 1/zk, see Section 1 for the consequences of this.

11

it is a2 = σ2
ik/x

2
i . If this behaviour is valid for the combination under investigation, a single call

to void SetRelUnc() should be used, otherwise individual user defined functions have to be
provided. If this is needed, for any uncertainty source k the functions for all estimates i have to
be given.

void SetNotRelUnc():
void SetNotRelUnc(Int t k): The first implementation of this function will declare all active
uncertainty sources as absolute uncertainties and revert to the initially provided values. The
second will do the same, but only for the source k.

3.6 Getters

3.6.1 Getters for active estimates and uncertainties

The following functions give access to the actual numbers of active estimates, uncertainties and
observables. This information is only available after a call to FixInp(), otherwise the return
value is zero.

Int t GetActEst() const: Returns the number of active estimates.

Int t GetActUnc() const: Returns the number of active uncertainties.

Int t GetActObs() const: Returns the number of active observables. Although the interface
does not allow to disable observables, still this number will differ from the value of NumObs origi-
nally supplied, whenever all estimates determining one of the observables have been deactivated
by calling SetInActiveEst().

The following functions give access to the names of the active estimates, uncertainties and
observables. This information is only available after a call to FixInp(), otherwise, as well as for
inactive estimates, the return value is NULL.

TString GetNamEst(Int t i) const: Returns the name of the active estimate i.

TString GetNamUnc(Int t k) const: Returns the name of the active uncertainty k.

TString GetNamObs(Int t n) const: Returns the name of the active observable n.

The following functions give access to the actual lists of estimates, uncertainties and observ-
ables. Again, this information is only available after a call to FixInp(). In this case the return
value is 1 otherwise it is 0. These functions return a pointer to the first element of an array
of Int t values. The structures are filled always starting from element 0. The dimensions are
dynamical, i.e. they depend on the number of active estimates, uncertainties and observables
that may well differ from the dimensions originally supplied to the constructor of the class. As
a consequence, if the structures are defined by the user and filled using the original dimensions,
the last part of the structures will contain senseless non zero values, whenever estimates or un-

12

certainty sources are disabled and the functions are called a second time.

Int t GetIndEst(Int t* IndEst) const: Returns the list of active estimates. The dimension
is: IndEst(GetActEst()).

Int t GetIndUnc(Int t* IndUnc) const: Returns the list of active uncertainties. The dimen-
sion is: IndUnc(GetActUnc()).

Int t GetIndObs(Int t* IndObs) const: Returns the list of active observables. The dimension
is: IndObs(GetActObs()).

Int t GetPreEst(Int t n) const: Returns the index i of most Pre-cise Est-imate for observable
n.

The following functions give access to various quantities for the active estimates and uncer-
tainties. See above for their availability and return values. These functions come in pairs and
return a pointer to either a TMatrixD or the first element of an array of Double t values. The
structures are filled always starting from element (0, 0) or 0. The dimensions of the matrices
are given below, the dimension of the arrays should be the product of the number of columns
and rows of the matrices. The user has to take care of the proper dimension of the structure
in the calling function. Also here the dimensions are dynamical (see above for the consequences).

Int t GetCov(TMatrixD* UseCov) const:
Int t GetCov(Double t* RetCov) const: Returns the covariance matrix of the estimates. The
dimension is: UseCov(GetActEst(),GetActEst()).

Int t GetCovInvert(TMatrixD* UseCovI) const:
Int t GetCovInvert(Double t* RetCovI) const: Returns the inverse of the covariance matrix
of the estimates. The dimension is: UseCovI(GetActEst(),GetActEst()).

Int t GetRho(TMatrixD* UseRho) const:
Int t GetRho(Double t* RetRho) const: Returns the correlation matrix of the estimates. The
dimension is: UseRho(GetActEst(),GetActEst()).

Int t GetParams(Int t Ifl, TMatrixD* UseParams) const:
Int t GetParams(Int t Ifl, Double t* RetParams) const: Returns the matrices of parame-
ters for hypothetical pairwise combinations. See PrintParams() for the meaning of Ifl. The
dimension is: UseParams(GetActEst(),GetActEst()).

3.6.2 Getters for the consistency of the combination

This information is only available after a call to Solve(), otherwise the return value of the
functions is zero.

13

Double t GetChiq() const: Returns the χ2 value of the result.

Int t GetNdof() const: Returns the number of degrees of freedom Ndof , i.e. the difference of
the number of active estimates and active observables.

Double t GetProb() const: Returns the χ2 probability P (χ2, Ndof) of the result.

Double t GetPull(Int t i) const: Returns the pull of the estimate i. The pull is defined as
the difference of the estimate and the observable, divided by the square root of the difference of
the variances of the two.

3.6.3 Getters for active observables

The following functions give access to various quantities for results for the active observables
that are obtained from the combination of the active estimates given their active uncertainties.
Again, this information is only available after a call to Solve(). Also here, this is indicated by
the return value of the integer function, which is 1 if successful, i.e. Solve() was called, and 0
otherwise. These functions also come in pairs.

Int t GetCovRes(TMatrixD* UseCovRes) const:
Int t GetCovRes(Double t* RetCovRes) const: Returns the covariance matrix of the observ-
ables. The dimension is: UseCovRes(GetActObs(),GetActObs()).

Int t GetRhoRes(TMatrixD* UseRhoRes) const:
Int t GetRhoRes(Double t* RetRhoRes) const: Returns the correlation matrix of the observ-
ables. The dimension is: UseRhoRes(GetActObs(),GetActObs()).

Int t GetWeight(TMatrixD* UseWeight) const:
Int t GetWeight(Double t* RetWeight) const: Returns the matrix of the BLUE weights of
the estimates for the various observables. The dimension is: UseWeight(GetActEst(),GetActObs()).

Int t GetResult(TMatrixD* UseResult) const:
Int t GetResult(Double t* RetResult) const: Returns the matrix of the results of the ob-
servables in a form similar to what is expected for the filling of the estimates in FillEst() de-
scribed above. Each observable is stored in one row, where the first element is the value, followed
by the individual uncertainties. The dimension is: UseResult(GetActObs(),GetActUnc()+1).

Int t GetUncert(TMatrixD* UseUncert) const:
Int t GetUncert(Double t* RetUncert) const: Returns the matrix of the total uncertainties
of the observables. The dimension is: UseUncert(GetActObs(),1).

Int t GetNumScaFac() const:
Returns the number of groups of correlations l defined in the constructor.

Int t GetNumScaRho() const:

14

Returns the number of steps in the correlations used in SolveScaRho, which is ten.

Int t GetScaVal(Int t n, TMatrixD* UseScaVal) const:
Int t GetScaVal(Int t n, Double t* RetScaVal) const: Returns the result of SolveScaRho()
for the differences in the values of the observable n. The dimension is:
UseScaVal(GetActUnc()*GetNumScaFac(),GetNumScaRho()).

Int t GetScaUnc(Int t n, TMatrixD* UseScaUnc) const:
Int t GetScaUnc(Int t n, Double t* RetScaUnc) const: Returns the result of SolveScaRho()
for the differences in the uncertainties of the observable n. The dimension is:
UseScaUnc(GetActUnc()*GetNumScaFac(),GetNumScaRho()).

3.7 Print out

The software provides some print out during the various steps. Naturally, printing more infor-
mation helps developing the user functions, but afterwards it only distracts from the important
information. Consequently, the level of details reported to the user can be steered.

void SetPrintLevel(Int t p): Set the level of details for the print out 0 ≤ p ≤ 2, with in-
creasing details for increasing values of p.

There exist four groups of Print functions. The first group returns information related to
the presently active estimates and uncertainties, and the second information related to the result
for the observables. Given the flexibility of the Set functions described above, they only reflect
the correct status after a call to FixInp() or Solve(), respectively. Consequently, they are
disabled until the respective function has been called.

The third group consists of just one function that shows the present status of the input and
the results. Depending on the print level it calls a number of functions from the first two groups.
Finally, the fourth group returns the finding of specific Solve...() functions described above.

3.7.1 Print functions for active estimates

Again, also for the print functions, the indices i, k refer to the original estimate and uncertainty
source indices, respectively.

void PrintListEst() const: Prints the list of the active estimates.

void PrintListUnc() const: Prints the list of the active uncertainties.

void PrintNamEst() const: Prints the names of the active estimates.

void PrintNamUnc() const: Prints the names of the active uncertainties.

15

void PrintEst(Int t i) const: Prints the information for the active estimate i.

void PrintEst() const: Prints the information for all active estimates.

void PrintCofRelUnc() const:
void PrintCofRelUnc(Int t k) const: The first implementation of this function will print for
all active estimates the coefficients for all active and relative uncertainties. The second will do
the same, but only for the uncertainty source k.

void PrintCor(Int t k) const: Prints the correlation matrix of the active uncertainty source
k.

void PrintCor() const: Prints the correlation matrix of all active uncertainty sources.

void PrintCov(Int t k) const: Prints the contribution of the uncertainty source k to the co-
variance matrix of the active estimates.

void PrintCov() const: Prints the covariance matrix of the active estimates.

void PrintCovInvert() const: Prints the inverted covariance matrix of the active estimates.

void PrintRho() const: Prints the correlation matrix of the active estimates.

void PrintCompatEst() const: Prints the pair wise compatibility of the estimates of the same
observable given their correlation. The compatibility is based on a χ2 and the corresponding
probability using P (χ2, Ndof) = P (χ2, 1). The χ2 is defined as χ2 = (x1 − x2)

2/(σ2
1 + σ2

2 −
2 ρ12 σ1 σ2).

void PrintParams(Int t Ifl) const: Prints the matrices of parameters for hypothetical pair-
wise combinations of the estimates i and j provided they determine the same observable. If not,
for this pair zero is returned instead. Given the symmetry, only the lower half of the matrix
is filled. The parameter printed depends on the value of Ifl. For Ifl = 0 the ratio of the
uncertainties is returned, i.e. σi/σj with j > i. This ratio corresponds to z if σi > σj and 1/z
otherwise. For Ifl > 0 the values of Eqs. 1–6 are returned.

void PrintPull(Int t i) const: Prints the pull of the active estimate i.

void PrintPull() const: Prints the pull of all active estimates.

3.7.2 Print functions for the observables

void PrintListObs() const: Prints the list of active observables.

void PrintNamObs() const: Prints the names of the active observables.

16

void PrintCovRes() const: Prints the covariance matrix of the results for all observables.

void PrintRhoRes() const: Prints the correlation matrix of the results for all observables.

void PrintWeight() const: Prints the weight matrix of the results for all observables (Columns)
and estimates (Rows).

void PrintResult() const: Prints the result for each observable. First the linear combination
of the individual estimates is given. Then the combined values for the observables are listed to-
gether with the full breakdown of their uncertainties. Finally, the separation into the statistical
uncertainty (k = 0) and the total systematic uncertainty (the square root of the quadratic sum
of the contributions from all sources with k > 0) is given.

void PrintCompatObs() const: Prints the pair wise compatibility of the observables given
their correlation. For the definition of the χ2 used see the explanation of PrintCompatEst().
Obviously, here this compatibility only makes sense if the observables should coincide, i.e. they
relate to the same physics parameter. If that is not the case this information should be ignored.

void PrintChiPro() const: Prints the χ2 together with the number of degrees of freedom
Ndof , and the χ2 probability P (χ2, Ndof) of the result.

3.7.3 Print functions for the overall status

void PrintStatus() const: Prints the status of input and output depending on the state like:
fixed or solved and the print level.

3.7.4 Print functions for specific Solve...() functions

void PrintAccImp() const: Prints the findings of SolveAccImp(Dx). The order of importance
is given. For each observable, the parameters for the hypothetical pair-wise combinations of each
of its estimate with the most precise one is given. The change is reported for the combined value
and its uncertainty while including the estimates one by one according to importance in the
combination. Finally, the list of estimates to be used in the combination is given that corre-
sponds to the relative improvement Dx requested in the call to SolveAccImp(Dx).

void PrintScaRho() const: Prints the differences in the values and uncertainties for all ob-
servables obtained in the correlation scan performed by SolveScaRho(RhoFla). The matrix
with the remaining correlation groups l is given. The ranges in r used are listed per uncertainty
source k, and group of correlation l. The number of inversion failures is reported if needed. For
each observable the differences in the values and uncertainties are reported per source k and for
all 10 values of r. Finally, the total differences are reported with the following meaning. For the
independent scan, i.e. RhoFla = 0 the total is the quadratic sum of all sources ignoring inversion
failures, i.e. entries reported as -1.00. In contrast, for the simultaneously scan, i.e. RhoFla = 1

the total coincides with the last line of the previously accumulated result.

17

void PrintInfWei() const: Prints the information weights defined above in the description
of SolveInfWei() for the active estimates.

void PrintMaxVar() const: Prints the findings of SolveMaxVar(). The variance of the com-
bined result and the correlation matrix of the estimates are given before and after the maximi-
sation of the variance. In addition listed are the number of times an unstable matrix inversion
has been detected. Finally, the fitted factors are given, depending on the value of IFuRho used
in the call to SolveMaxVar(IFuRho).

3.8 Utilities

For the special situation of two estimates of a single observable discussed above, the data can
be inspected more closely. Two sets of functions are implemented. The first set is independent
of the data structure. The second set (at present containing only a single function) works on a
pair of active estimates. Both sets are discussed in turn.

In addition, a utility is provided to inspect the situation in the case of instable matrix
inversions. Finally, for publishing the results two utilities to create LATEX and PDF output are
provided.

3.8.1 Data structure independent utilities for a pair of estimates

The first two function can be used for arbitrary values of ρ and z, to either evaluate Eqs. 1–6,
or to produce figures analogous to Figures 1(a)–2(d).

Double t GetPara(Int t ifl, Double t rho, Double t zva) const: Returns for given values
of rho = ρ and zva = z the values of Eq. ifl.

Double t FunPara(Double t* x, Double t* par) const: This function implements the possi-
bility to use GetPara() as a TF1 function. The meaning of the parameters is as follows: for all
cases par[1] = ifl. For the situation that z is a parameter, and ρ is the function variable, as
e.g. in Eq. 1, par[0] = z and x = ρ. For the situation that ρ is a parameter, and z is the function
variable, as e.g. in Eq. 6, the situation is reversed, i.e. par[0] = ρ and x = z.

For the user to implement this as a TF1 function the following notation should be used:
TF1* Func = new TF1(FuncName,this,&Blue::FunPara,xlow,xhig,2,”Blue”,”FunPara”);
Only when this syntax is followed the normal ROOT methods for TF1 functions can be used.

Finally, the last utility exploits the characteristics of an arbitrary pair of estimates.

void DrawSens(Double t xv1, Double t xv2, Double t sv1, Double t sv2, Double t rho,

TString FilNam) const: The required input is xv1 = x1, xv2 = x2, sv1 = σ1, sv2 = σ2,
rho = ρ, see Section 1 for details. The same up and down variations of ρ and z as discussed below
for InspectPair() are performed, and the result is visualised in a figure similar to Figure 3.
This figure is finally stored in the file FilNam.pdf.

18

3.8.2 Data structure dependent utility for a pair of estimates

void InspectPair(Int t i,Int t j) const:
void InspectPair(Int t i,Int t j, TString FilNam) const: The pair of active estimates
i, j is inspected more closely. When the second implementation is invoked also DrawSens (see
above) is called.

First, the compatibility of the estimates is evaluated. If the estimates are not consistent, no
combination should be performed! Then the actual combination is performed and the values of
Eqs. 1–6 are reported. Subsequently, the parameters ρ and z are varied by about ±10% in the
following way. A variation of ±0.1 is attempted in ρ. In addition, the variation is restricted to
stay within −0.99 < ρ < 0.99 such that, depending on the initial value of ρ, the actual range
may be smaller. Similarly, for z an upward variation to zup = 1.1 ·z is performed. The downward
variation to zdn = 0.9 · z is further restricted to not fall below the minimum of zdn = 1.01. This
ensures that x1 remains the more precise estimate. The combination is repeated for all possible
pairs of values using the three cases each for (zdn, z, zup) and (ρdn, ρ, ρup). All nine results and
the observed range in x and σx are reported.

3.8.3 Utility to inspect instable matrix inversions

Int t InspectResult() const:
For some of the solving methods, especially when manipulating individual elements of the covari-
ance matrix, unstable matrix inversions can occur. At present, three non exclusive situations are
distinguished. Firstly, an individual uncertainty of an observable gets negative or its evaluation
results in a -nan value, secondly the same happens to the total uncertainty of an observable, and
thirdly the total uncertainty of an observable is larger than the one of its most precise estimate.
The return value of the function indicates which of the situations occurred. Starting from an
initial return value of zero, in the first, second and third situation, -1, -10 and -100 is added to
it.

For a user call to Solve(), in any of these cases a message is issued by the software. If
this occurs, the situation can be inspected by setting the print level to greater than zero and
calling InspectResult(), which will also report the occurrence of negative Eigenvalues of the
covariance matrix if present.

3.8.4 Utilities for publishing

void LatexResult(TString FilNam) const:
void LatexResult(TString FilNam, TString ForVal, TString ForUnc, TString ForWei,

TString ForRho, TString ForPul) const: Creates a LATEX file FilNam.tex with a number
of tables. The tables provided are: one table with the active estimates together with the observ-
ables, one with the correlations of the estimates, one with the blue weights and the pulls and
finally, for NumObs>1, one table with the correlation of the observables.

The first implementation uses default formats ForXxx where Xxx stands for the Val-ues, Unc-
ertainties, Wei-ghts, Correlations (Rho), and finally the Pul-ls. The formats used are: %5.2f for
values and uncertainties, and %4.2f for weights, correlations and pulls. If these are not suit-
able for the case under study they can be individually provided by the user using the second
implementation. After creation, this file can be processed from the shell using the local LATEX

19

implementation.

void DisplayResult(Int t n, TString FilNam) const:
void DisplayResult(Int t n, TString FilNam, TString ForVal, TString ForUnc) const:
Creates a function FilNam Obs n.cxx which after compiling (like any of the examples listed
below) produces a file FilNam Obs n.pdf with a figure containing the active estimates that de-
termine the observable n together with the result of the combination. For the definition of the
formats ForXxx see the description for LatexResult().

4 Examples

To demonstrate the usage of the software a number of example functions are provided. They
reproduce the numerical values of all combinations performed in the respective publication (but
for differences that are explained below). In some cases a few more combinations are performed
based on the information contained in the original publications. In addition, the functions show
examples of how to retrieve the results into local data structures. The examples are listed in the
following:

B NIMA 270 110.cxx(): Function that reproduces all results discussed in [1].

B NIMA 500 391.cxx(Int t Flag): Function that reproduces all results discussed in [2].

B EPJC 72 2046.cxx(int Flag): Function that reproduces all results discussed in [7].

B Peelles.cxx(): Function that reproduces Peelle’s Puzzle, see [?].

B arXiv 1107 5255.cxx(int Flag): Function that reproduces the 2011 (v3) combination of
the Tevatron results on the top quark mass [8].

B arXiv 1305 3929.cxx(int Flag): Function that reproduces the 2013 (v2) combination of
the Tevatron results on the top quark mass [9].

B arXiv 1307 4003.cxx(int Flag): Function that reproduces the results in [6]. (A different
minimum with respect to the one quoted in Table 6 is found for the maximisation of the variance
for IFuRho = 3. See the code for further details.)

B ATLAS CONF 2012 095.cxx(int Flag): Function that reproduces the 2012 combination of the
LHC results on the top quark mass [10].

B ATLAS CONF 2012 134.cxx(int Flag): Function that reproduces the 2012 combination of the
LHC results on the cross-section of top quark pair production [11].

B ATLAS CONF 2013 033.cxx(int Flag): Function that reproduces the 2013 combination of the
LHC results on the W-boson polarisation in top quark pair events [12]. (Some discrepancies with

20

respect to the published Tables 6 and 7 were found and are under investigation with the authors.)

B ATLAS CONF 2013 098.cxx(int Flag): Function that reproduces the 2013 combination of the
LHC results on the single top-quark cross-section in the t-channel [13] using the BLUE method
with relative uncertainties.

B ATLAS CONF 2013 102.cxx(int Flag): Function that reproduces the 2013 combination of the
LHC results on the top-quark mass [14]. (A typo for the χ2 value quoted in Table 4 was found
and has been acknowledged by the authors.)

B PRD41 982.cxx(int Flag): Function that reproduces the combination of Ref. [14] using the
BLUE method with individual relative uncertainties.

For each example B name.cxx a script B name.inp is provided that enables the creation of an
output file for that example by typing: root -b < B name.inp > B name.out. To further ease
the usage, two shell scripts BlueOne and BlueAll are provided. A single example is run by typing
BlueOne B name at the shell prompt. To use all input files B name.inp in the current directory
simply type BlueAll at the shell prompt. To verify the absence of programming mistakes within
the user software that can be detected by the compiler also CompOne and CompAll are provided.
They should be used in an analogous way to BlueOne and BlueAll, but this time to compile
B name.cxx.

5 Conversion of input files

To facilitate the conversion for users that have been working with the Fortran software [3], a
utility is provided that takes a corresponding ASCII input file and converts it to a function that
is similar to the examples listed above.

void ForttoBlue(TString FilNam, TString ForVal, TString ForRho) const: This func-
tion uses the input file FilNam.in and creates a file B FilNam.cxx together with a corresponding
steering file B FilNam.inp. Afterwards B FilNam.cxx can be expanded by the user and finally,
it should be used the same way as the examples described in Section 4.

Running the Fortran software on FilNam.in should give the same result than what is ob-
tained using B FilNam.cxx. The format statement ForVal applies to the write statements for
the estimates and uncertainties, and ForRho to the entries in the correlation matrices. See
LatexResult() for a more detailed description of the meaning. Since this utility performs
formatted reading from a file, strict requirements on the content of FilNam.in are imposed,
e.g. blanks in names are not supported. The full list of requirements is listed when running
ForttoBlue(). The function ForttoBlue() reports the findings during execution, such that in
the case of failures the input files should be easily adaptable.

The utility works for the FilNam.in files that I use. In addition, to ease the usage, an example
input file EPJC 72 2046Fort.in is provided together with ForttoBlue.inp. After creating the
function B EPJC 72 2046Fort.cxx with ForttoBlue(), the result from the Fortran software on
EPJC 72 2046Fort.in, as well as those from running the newly created function for Flag = 0,

21

i.e. B EPJC 72 2046Fort(0) or the distributed example B EPJC 72 2046(0), are identical.

6 Hints on the software installation

The software version x.y.z is distributed via the corresponding hepforge project page [15] as a
gziped tar file named Blue-x.y.z.tar.gz, where the present version is x.y.z = 1.9.0. The software
is not expected to depend on the installed version of the ROOT package. It has been compiled
with a number of ROOT versions, however, most tests have been performed with ROOT 5.34/04.
To install and use it perform the following steps:

1. To unzip the file: gzip -d Blue-1.9.0.tar.gz

2. To untar the file: tar -xf Blue-1.9.0.tar

3. To compile the class: make

4. Start ROOT

5. To load the Blue library: gSystem->Load("libBlue.so");

6. To get access to any of the example functions: e.g. .L B EPJC 72 2046.cxx++

7. To execute a specific combination of this example: B EPJC 72 2046(1)

For a more automated usage see the above descriptions of BlueOne and BlueAll. Finally, using
the script Install a version x.y.z can be installed and the examples run by typing Install

Blue-x.y.z.tar.gz.
In addition to the interface described in this manual, the software contains a number of

private: member functions. However, differently from regular C++ code, when the ACLiC
system is used for the examples as suggested above, these member functions are not prohibited
from being used outside of the class. Clearly, using those functions is strongly discouraged and
can lead to unexpected results.

7 Conclusions

In this manual, a software package to perform the combination of several estimates of a number
of observables was presented. The software is freely available from the corresponding hepforge
project page. Given it is based on ROOT, it is distributed under the GNU Lesser General Public
License. When using this software in publications, please give reference to the web page. Should
you spot any mistake or peculiarity, please inform the author. If you want to be informed about
new versions of the software by e-mail, let me know, either via the hepforge page or by direct
e-mail.

Acknowledgements

I like to thank Sven Menke and Giorgio Cortiana for useful discussions on the project and their
assistance. I am grateful to Sven for his valuable help on implementation issues, and to Giorgio
for using the code and providing feedback.

22

A The BLUE formulas for two estimates

In the following Eq. 1 and Eq. 2 are derived with the BLUE formalism. The covariance matrix
for the solutions of the linear combinations in the BLUE formalism is given by Eq. 5 of Ref. [2].
For the two estimate case of one observable this reduces to:

σ2
x =

(
1− β β

)
·
(

σ2
1 ρ σ1 σ2

ρ σ1 σ2 σ2
2

)
·
(

1− β
β

)
(11)

dividing by σ2
1 and using z = σ2/σ1 yields:

σ2
x

σ2
1

=
(

1− β β
)
·
(

1 ρz
ρz z2

)
·
(

1− β
β

)
(12)

multiplication yields:

σ2
x

σ2
1

= (1− β)2 + 2ρzβ(1− β) + β2z2

= 1− 2β(1− ρz) + β2(1− 2ρz + z2) (13)

taking the derivative with respect to β equal to zero yields:

∂

∂ β
(
σ2
x

σ2
1

) = −2(1− ρz) + 2β(1− 2ρz + z2) = 0 (14)

Finally, solving for β gives Eq. 1. Inserting the result for β into Eq. 13 yields:

σ2
x

σ2
1

= 1− 2
(1− ρz)2

1− 2ρz + z2
+

(1− ρz)2

1− 2ρz + z2

=
(1− 2ρz + z2)− (1− ρz)2

1− 2ρz + z2
(15)

which after evaluating the numerator terms yields Eq. 2.

23

ρ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

β

-1.5

-1

-0.5

0

0.5

2
 xβ +

1
) xβx = (1-

1- x2x
1x - x

 = 2z + zρ1 - 2
zρ1 -

 = β

 =
1σ
2σ

z = 1.0 1.1 1.2 1.5 2.0 3.0

(a) β as a function of ρ

ρ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

1σxσ
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2
 xβ +

1
) xβx = (1-

2z + zρ1 - 2
)2ρ(1 - 2z

 =
1σ
xσ

 =
1σ
2σ

z = 1.0 1.1 1.2 1.5 2.0 3.0

(b) σx/σ1 as a function of ρ

ρ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

ρdβd

-3

-2.5

-2

-1.5

-1

-0.5

0

2
 xβ +

1
) xβx = (1-

2)2z + zρ(1 - 2
)2z(1 - z

 = ρd
βd

 =
1σ
2σ

z = 1.0 1.1 1.2 1.5 2.0 3.0

(c) dβ/dρ as a function of ρ

ρ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

ρd
xσ 1σ1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2
 xβ +

1
) xβx = (1-

3)2z + zρ)(1- 22ρ(1-
1z) ρ) (1-ρ = z (z-ρd

xσ

1σ
1

 =
1σ
2σ

z = 1.0 1.1 1.2 1.5 2.0 3.0

(d) 1/σ1 dσx/dρ as a function of ρ

Figure 1: Several variables as a function of ρ for a number of z values. Shown are (a) β and (b)
σx/σ1 together with there derivatives with respect to ρ, (c) dβ/dρ and (d) 1/σ1 dσx/dρ

24

z
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

β

-1.5

-1

-0.5

0

0.5

2
 xβ +

1
) xβx = (1-

1- x2x
1x - x

 = 2z + zρ1 - 2
zρ1 -

 = β

 =ρ
1σ
2σ

z = -1.0 0.0 0.4 0.6 0.8 0.9

(a) β as a function of z

z
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

1σxσ
0

0.2

0.4

0.6

0.8

1

2
 xβ +

1
) xβx = (1-

2z + zρ1 - 2
)2ρ(1 - 2z

 =
1σ
xσ

 =ρ
1σ
2σ

z = -1.0 0.0 0.4 0.6 0.8 0.9

(b) σx/σ1 as a function of z

z
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

d
zβd

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

2
 xβ +

1
) xβx = (1-

2)2z + zρ(1 - 2
) - 2z2(1 + zρ

 =
dz

βd

 =ρ
1σ
2σ

z = -1.0 0.0 0.4 0.6 0.8 0.9

(c) dβ/dρ as a function of z

z
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

d
zxσ 1σ1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

2
 xβ +

1
) xβx = (1-

3)2z + zρ(1 - 2

2ρ1 -
z) ρ = (1 -

dz
xσ

1σ

1

 =ρ
1σ
2σ

z = -1.0 0.0 0.4 0.6 0.8 0.9

(d) 1/σ1 dσx/dρ as a function of z

Figure 2: Several variables as a function of z for a number of ρ values. Shown are (a) β and (b)
σx/σ1 together with their derivatives with respect to z in (c) dβ/dz and (d) 1/σ1 dσx/dz.

25

ρ
-1

-0
.8

-0
.6

-0
.4

-0
.2

0
0.

2
0.

4
0.

6
0.

8
1

-1
.5-1

-0
.50

0.
5

 =
 0

.4
1

β
1:

x
=

17
5.

23
 +

-
2.

54

 =
 1

75
.0

1
+-

 2
.6

8
1x

 =
 1

75
.5

4
+-

 2
.8

0
2x

 <
 0

.4
9

β
0.

10
 <

 =
 0

.4
1

β
1:

ρ
-1

-0
.8

-0
.6

-0
.4

-0
.2

0
0.

2
0.

4
0.

6
0.

8
1

-3

-2
.5-2

-1
.5-1

-0
.50

 =
 -

0.
32

ρ
/dβ

3:
 d

1-
4:

 z
 =

 1
.0

1,
 1

.0
5,

 1
.1

5

 <
 -

0.
07

ρ

/dβ
-0

.9
3

<
d

 =
 -

0.
32

ρ
/dβ

3:
 d

z
1

1.
2

1.
4

1.
6

1.
8

2
-1

.5-1

-0
.50

0.
5

 =
 0

.4
1

β
5:

x
=

17
5.

23
 +

-
2.

54

 =
 1

75
.0

1
+-

 2
.6

8
1x

 =
 1

75
.5

4
+-

 2
.8

0
2x

 =
 0

.4
1

β
5:

z
1

1.
2

1.
4

1.
6

1.
8

2
-3

-2
.5-2

-1
.5-1

-0
.50

0.
5

/d
z

=
-1

.7
8

β
7:

 d

 =
 0

.6
3,

 0
.7

3,
 0

.8
3

ρ
5-

8:

/d
z

<
-1

.3
0

β
-2

.8
4

<
d

/d
z

=
-1

.7
8

β
7:

 d

ρ
-1

-0
.8

-0
.6

-0
.4

-0
.2

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

 =
 0

.9
5

1σ/ xσ
2:

 <
 1

.0
0

1σ/ xσ
0.

91
 <

 =
 0

.9
5

1σ/ xσ
2:

ρ
-1

-0
.8

-0
.6

-0
.4

-0
.2

0
0.

2
0.

4
0.

6
0.

8
1

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

 =
 0

.2
7

ρ
/d xσ

 d 1σ
4:

 1
/

 <
 0

.2
7

ρ
/d xσ

 d 1σ
0.

22
 <

 1
/ =

 0
.2

7
ρ

/d xσ
 d 1σ

4:
 1

/

z
1

1.
2

1.
4

1.
6

1.
8

2
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

 =
 0

.9
5

1σ/ xσ
6:

 =

 0
.9

5
1σ/ xσ

6:

z
1

1.
2

1.
4

1.
6

1.
8

2
-1

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

/d
z

=
0.

38
xσ

 d 1σ
8:

 1
/

/d
z

<
0.

39

xσ
 d 1σ

0.
34

 <
 1

/

/d
z

=
0.

38
xσ

 d 1σ
8:

 1
/

F
ig

u
re

3:
T

h
e

su
b
-fi

gu
re

s
1–

8
co

rr
es

p
on

d
to

F
ig

u
re

s
1–

2
fo

r
th

e
sp

ec
ia

l
ca

se
in

ve
st

ig
at

ed
,

i.
e.

th
e

b
la

ck
p

oi
n
t

re
p
re

se
n
ti

n
g

th
e

ac
tu

al
va

lu
es

of
ρ

an
d
z.

T
h
e

es
ti

m
at

es
x
1

an
d
x
2
,

as
w

el
l

as
th

e
co

m
b
in

ed
va

lu
e
x

,
to

ge
th

er
w

it
h

th
ei

r
u
n
ce

rt
ai

n
ti

es
,

ar
e

li
st

ed
.

In
ad

d
it

io
n

q
u
ot

ed
ar

e
th

e
th

re
e

va
lu

es
of
ρ

an
d
z

u
se

d
fo

r
th

e
tw

o
p
ai

rs
of

th
re

e
cu

rv
es

.
F

or
th

e
d
er

iv
at

iv
es

of
β

an
d
σ
x
/σ

1

w
it

h
re

sp
ec

t
to
ρ

an
d
z,

fo
r

ea
ch

su
b
-fi

gu
re

th
e

ra
n
ge

of
va

lu
es

is
gi

ve
n
,

ob
ta

in
ed

fo
r

th
e

th
re

e
cu

rv
es

sh
ow

n
,

w
h
il
e

ke
ep

in
g

th
e

re
sp

ec
tv

e
va

lu
e

of
th

e
ot

h
er

p
ar

am
et

er
.

F
in

al
ly

,
fo

r
β

an
d
σ
x
/σ

1
th

ei
r

fu
ll

ra
n
ge

is
q
u
ot

ed
,

ob
ta

in
ed

u
si

n
g

al
l

n
in

e
p

os
si

b
le

p
ai

rs
of

th
e
ρ

an
d
z

va
lu

es
.

26

B The release notes

The changes made to the software are listed in reverse order. Only the main points are given,
for details please refer to the description of the interface in the main part of the text.

Changes from 1.8.0 to 1.9.0

1. Fix a bug in the calculation of 1/σ1dσx/dρ in GetPara(Ifl = 4). For the first factor of
the equation, z2 was used instead of z, see Eq. 4. Given this change, the display of the
derivatives in DrawSens() has been changed, see Figure 3. In addition, this figure has been
expanded by also showing the functional dependence of β and σx/σ1 on z for various values
of ρ, and by displaying the ranges of several parameters. Some other print out within the
sub-figures has been removeded.

This bug did not affect any combination, but all print out related to GetPara(Ifl = 4).

2. Change a few examples.

Changes from 1.7.0 to 1.8.0

1. Complete change of the handling of scaled uncertainties. Remove a bug in
SetRhoFacUnc(...) that occurred in case of InActive uncertainties.

2. Add SolveScaRho() to perform automated scans of different correlation assumptions for
groups of estimates (defined in the constructor), and the corresponding PrintScaRho() to
report the findings.

3. To serve this, add new functionality to the constructor, and to SetRhoFacUnc(...) and
SetRhoValUnc(...).

4. Add functions to Get the Num-ber of Sca-le Fac-tor groups GetNumScaFac(), and the
Num-ber of Sca-le factor Rho values GetNumScaRho().

5. Add getters, GetScaVal(...) and GetScaUnc(...) to return the differences in Val-ues
and Unc-ertainties obtained with SolveScaRho() to the user.

6. Expand the information listed by PrintAccImp(). Remove a bug in PrintAccImp() that
occurred for the improvement reported by adding the first estimate in case of InActive
estimates.

7. Add InspectResult() to allow a closer look at the input in case of instable matrix inver-
sions.

8. Fix a bug in the quoted pull values in LatexResult(...) that could occurr in case of
InActive estimates.

9. Move some print statements from Solve() to PrintStatus().

10. Change a few examples.

Changes from 1.6.0 to 1.7.0

1. Adapt Makefile for 32bit ROOT installations on 64bit machines.

2. Add one option to SolveMaxVar().

3. Add various options to SolveAccImp(), keep the old function to run the new default
option.

4. Add a function to Get the most Pre-cise Est-imate of a given observable GetPreEst().

5. Change some print out in DrawSens().

27

6. Changes some print statements is PrintStatus() and PrintAccImp().

7. Fix a typo in Peeles, rename B Peeles to B Peelles.

8. Change a few examples.

Changes from v1.5 to 1.6.0

1. From this version onwards the software is hosted at http://blue.hepforge.org/. I also
converted to the suggested numbering of the software versions.

2. Change from using ACLiC for the class to using compiled code. Convert to a consistent
usage of const variables in member function calls. Add the corresponding Makefile and
change the B name.inp files accordingly.

3. Related to the consistent const variable usage in function calls the following protections
against out of bound values have been altered. The protection against not allowed values of
Dx in SolveAccImp() and SolveRelUnc(); the protection against not allowed values of rho
in GetPara(); and the protection against x2 being the more precise result in DrawSens().

4. Remove all calls to TString::Itoa() which is only available from ROOT 5.34 onwards.

5. Rename the setters for RelativeUnc to RelUnc to match the name of the corresponding
solver SolveRelUnc().

6. Change some write statements in LatexResult().

7. Fix a bug in DrawSens(). For the data point of the derivative of σx/σ1 with respect to ρ
the value itself was shown rather than its absolute value. Change some write statements.
Change the minimum z to 1.01.

8. Optimise the calculation in the getters for arrays of Double t values.

9. Include a print out of the various parameters of hypothetical pairwise combinations
PrintParams(). Add the corresponding GetParams() functions.

10. Include a print out of the χ2 and P (χ2) for the combination PrintChiPro().

11. Include some changes to the print out in PrintMaxVar().

12. Update a number of example routines.

13. Adapt BlueAll as to only use Binp to protect files created via ForttoBlue.inp and
changed by the user from being overwritten.

14. Add CompOne and CompAll to compile Bcxx user functions to check for compiler
errors.

15. Remove SolveIterative() as announced before.

Changes from v1.4 to v1.5

1. Expand SolveMaxVar() to also properly work in the case of InActive estimates and/or
uncertainties. Fix a bug that for IFuRho = 1 resulted in fk = −1 for the situation where
the maximum variance occurs for the initial situation, i.e. for fk = 1. Finally, the algorithm
was protected against numerical instabilities for IFuRho = 2.

2. Fix a bug in FixInp() when disabling estimates while using Relative Uncertainties.

3. Add the possibility to assign names to estimates (XXX=Est), uncertainties (Unc) and
observables (Obs). Add three functions each to fill: FillNamXXX(), retrieve: GetNamXXX(),
and print: PrintNamXXX() those.

4. Update a number of print, as well as the LATEX and display routines to make use of these

28

names. Expand the content of the produced LATEX file.

5. Add possible Format statements to LatexResult() and DisplayResult().

6. Expand the constructor to print the software version and the date to the log file.

7. Include a utility called ForttoBlue() that works outside of the class. This utility converts
input files for the Grunewald Fort-an software to functions to be used within the Blue

class.

8. Update a number of example routines. Remove a return statement that had been inserted
for test purposes into B arXiv 1307 4003.cxx. This prevented a number of results from
being printed.

9. Update the description of DisplayResult().

10. Fix the description of the meaning of IFuRho for SolveMaxVar().

Changes from v1.3 to v1.4

1. Add functions to retrieve the list of active estimates GetIndEst(...), uncertainties
GetIndUnc(...) and observables GetIndObs(...) into user arrays.

2. Add a function to print the contribution of an uncertainty source k to the covariance
matrix PrintCov(k).

3. Add four new methods to solve: according to importance SolveAccImp(Dx), with the cal-
culation of information weights SolveInfWei(), by only using estimates that have positive
BLUE weights SolvePosWei(), or by maximising the variance of the result while chang-
ing the assumptions of the correlations of estimates for the various uncertainty sources
SolveMaxVar(IFuRho).

4. Add three new functions to print the findings of the respective solver: PrintAccImp(),
PrintInfWei() and PrintMaxVar().

5. Add two new functions to ease publishing the results: LatexResult() and DisplayResult()

that create a tex file with a table of estimates and observables, or a figure.

6. Rename the BLUE method with relative uncertainties SolveIterative() to SolveRelUnc().

7. Optimise SolveRelUnc(), protect against non filled functions for individual estimates when
using SetRelativeUnc(i, k, ActCof).

8. Add a new examples: B arXiv 1307 4003.

9. Change a few examples implementing the new functionalities.

10. Fix bug in print out of stat + syst uncertainty breakdown in PrintResult() for the case
of more than one observable.

Changes from v1.2 to v1.3

1. Add the possibility to fill percentage uncertainties to FillEst().

2. Add the possibility to have fixed vales for the correlations for a given uncertainty, see
SetRhoValUnc().

3. Add the possibility to have relative and absolute uncertainties for the iterative BLUE
method, see SetRelativeUnc().

4. Add the iterative BLUE method SolveIterative().

5. Add some print out to PrintResult().

6. Add two print functions PrintStatus() and PrintCofRelativeUnc().

29

7. Add three new examples: B ATLAS CONF 2013 098, B ATLAS CONF 2013 102 and
B PRD41 982.

8. Expand some examples.

9. Fix a bug in PrintCor(k) and PrintEst(i). The correct entry was printed, but for the
case of InActive uncertainties or estimates wrong error messages were produced.

10. Optimise FixInp(), protect against zero total uncertainties for estimates in the case of
InActive uncertainties, and change some print out.

Changes from v1.1 to v1.2

1. Add a constructor for a single observable.

2. Add the possibility to scale the correlation for individual uncertainty sources.

3. Add the calculation of the χ2 of the result.

4. Add the calculation and print function for the pull of the estimates.

5. Add the calculation of the compatibility of the estimates and observables.

6. Add the print function for the lists of estimates, uncertainties and observables.

7. Facilitate the retrieval of the total uncertainties of the observables.

8. Protect some private functions against wrong entries.

9. Improve some print functions and print statements.

10. Expand some examples.

Changes from v1.0 to v1.1

1. Change a number of print statements.

2. Add the possibility to set the level of details for the print out.

3. Add checks of the correlation matrices to FillCor().
1) Check full matrices for symmetry.
2) Check all matrices for range (−1 < ρ < 1).
3) Set all diagonal elements to one without notice.

4. Add B ATLAS CONF 2013 033.

5. Add B ATLAS CONF 2012 134.

6. Fix typo in Cor11 of B arXiv 1107 5255.cxx.

References

[1] L. Lyons and D. Gibaut and P. Clifford, How to combine correlated estimates of a single
physical quantity, Nucl. Instr. and Meth. A270 (1988) 110.

[2] A. Valassi, Combining correlated measurements of several different quantities, Nucl. Instr.
and Meth. A500 (2003) 391.

[3] M. Grunewald, private communication, unpublished software.

[4] R. Brun and F. Rademakers, ROOT - An Object Oriented Data Analysis Framework, Nucl.
Instr. and Meth. A389 (1997) 81–86, Proceedings of AIHENP’96 Workshop, Lausanne,
Sep. 1996.

30

[5] L. Lyons and A.J. Martin and D.H. Saxon, On the determination of the B lifetime by
combining the results of different experiments, Phys. Rev. D41 (1990) 982.

[6] A. Valassi and R. Chierici, Information and treatment of unknown correlations in the com-
binination of measurements using the BLUE method (v3). arXiv:arXiv:1307.4003.

[7] The ATLAS Collaboration, G. Aad, et al., Measurement of the top quark mass with the
template method in the top antitop → lepton + jets channel using atlas data, Eur. Phys.
J. C72 (2012) 2046. arXiv:arXiv:1203.5755.

[8] The Tevatron Electroweak Working Group for the CDF and DØ Collaborations, Combina-
tion of CDF and DØ results on the mass of the top quark using up to 5.8 fb−1 of data (v3).
arXiv:arXiv:1107.5255.

[9] The Tevatron Electroweak Working Group for the CDF and DØ Collaborations, Combi-
nation of CDF and DØ results on the mass of the top quark using up to 8.7 fb−1 at the
tevatron (v2). arXiv:arxiv:1305.3929.

[10] The ATLAS and CMS Collaborations, Combination of ATLAS and CMS results on the
mass of the top quark using up to 4.9 fb−1 of data, ATLAS-CONF-2012-095, CMS-PAS-
TOP-12-001.
URL http://cdsweb.cern.ch/record/1460441

[11] The ATLAS and CMS Collaborations, Combination of ATLAS and CMS top-quark pair
cross-section measurements using proton-proton collisions at

√
s = 7 TeV, ATLAS-CONF-

2012-134, CMS-PAS-TOP-12-003.
URL http://cdsweb.cern.ch/record/1478422

[12] The ATLAS and CMS Collaborations, Combination of the ATLAS and CMS measurements
of the W-boson polarization in top-quark decays, ATLAS-CONF-2013-033, CMS PAS TOP-
12-025.
URL http://cdsweb.cern.ch/record/1527531

[13] The ATLAS and CMS Collaborations, Combination of single top-quark cross-section mea-
surements in the t-channel at

√
s = 8 TeV with the ATLAS and CMS experiments, ATLAS-

CONF-2013-098, CMS-PAS-TOP-12-002.
URL http://cdsweb.cern.ch/record/1601029

[14] The ATLAS and CMS Collaborations, Combination of ATLAS and CMS results on the
mass of the top-quark mass using up to 4.9 fb−1 of

√
s = 7 TeV LHC data, ATLAS-CONF-

2013-102, CMS-PAS-TOP-13-005.
URL http://cdsweb.cern.ch/record/1601811

[15] R. Nisius, BLUE: a ROOT class to combine a number of correlated estimates of one or
more observables using the Best Linear Unbiased Estimate method.
URL http://blue.hepforge.org

31

http://arxiv.org/abs/arXiv:1307.4003
http://arxiv.org/abs/arXiv:1203.5755
http://arxiv.org/abs/arXiv:1107.5255
http://arxiv.org/abs/arxiv:1305.3929
http://cdsweb.cern.ch/record/1460441
http://cdsweb.cern.ch/record/1460441
http://cdsweb.cern.ch/record/1460441
http://cdsweb.cern.ch/record/1478422
http://cdsweb.cern.ch/record/1478422
http://cdsweb.cern.ch/record/1478422
http://cdsweb.cern.ch/record/1527531
http://cdsweb.cern.ch/record/1527531
http://cdsweb.cern.ch/record/1527531
http://cdsweb.cern.ch/record/1601029
http://cdsweb.cern.ch/record/1601029
http://cdsweb.cern.ch/record/1601029
http://cdsweb.cern.ch/record/1601811
http://cdsweb.cern.ch/record/1601811
http://cdsweb.cern.ch/record/1601811
http://blue.hepforge.org
http://blue.hepforge.org
http://blue.hepforge.org

	Introduction
	Software structure
	Details of the interface
	Constructor
	Filling functions
	Fix and free input
	Solver
	Setters
	Getters
	Getters for active estimates and uncertainties
	Getters for the consistency of the combination
	Getters for active observables

	Print out
	Print functions for active estimates
	Print functions for the observables
	Print functions for the overall status
	Print functions for specific Solve...() functions

	Utilities
	Data structure independent utilities for a pair of estimates
	Data structure dependent utility for a pair of estimates
	Utility to inspect instable matrix inversions
	Utilities for publishing

	Examples
	Conversion of input files
	Hints on the software installation
	Conclusions
	The BLUE formulas for two estimates
	The release notes

